Changeset - 79b929f58012
[Not reviewed]
default
0 2 0
Laman - 6 years ago 2019-03-03 00:47:31

image rectification
2 files changed with 13 insertions and 47 deletions:
0 comments (0 inline, 0 general)
exp/board_detect.py
Show inline comments
 
import sys
 

	
 
sys.path.append("../src")
 

	
 
import os
 
import math
 
import random
 
import itertools
 
import logging as log
 

	
 
import cv2 as cv
 
import numpy as np
 
import scipy.cluster
 
import scipy.ndimage
 
import scipy.signal
 

	
 
from geometry import Line
 
from annotations import DataFile,computeBoundingBox
 
from hough import show,prepareEdgeImg,HoughTransform
 
from analyzer.epoint import EPoint
 
@@ -100,48 +101,39 @@ class BoardDetector:
 
		quantized=quantized & (255-cv.cvtColor(edges,cv.COLOR_GRAY2BGR))
 
		show(quantized,"quantized, edges separated")
 

	
 
		# detect black and white stones
 
		stones=self._detectStones(quantized,black,white)
 

	
 
		# detect lines from edges and stones
 
		edgeImg=prepareEdgeImg(rect)
 
		hough=HoughTransform(edgeImg)
 
		stonesImg=np.zeros((self._rectH,self._rectW),np.uint8)
 
		for (point,c) in stones:
 
			cv.circle(stonesImg,(int(point.x),int(point.y)),2,255,-1)
 
		# cv.drawContours(stonesImg,[c for (point,c) in stones],-1,255,-1)
 

	
 
		show(stonesImg,"detected stones")
 
		hough.update(stonesImg,10)
 
		lines=hough.extract()
 

	
 
		linesImg=np.copy(rect)
 
		for line in lines:
 
		for line in itertools.chain(*lines):
 
			self._drawLine(linesImg,line)
 
		show(linesImg,"detected lines")
 

	
 
		# # detect vanishing points of the lines
 
		# imgCenter=EPoint(w//2-x1, h//2-y1)
 
		# (a,b,c,d)=(p-EPoint(x1,y1) for p in self._annotations[filename][0])
 
		# (p,q,r,s)=(Line(a,b),Line(b,c),Line(c,d),Line(d,a))
 
		# v1=p.intersect(r)
 
		# v2=q.intersect(s)
 
		# log.debug("true vanishing points: %s ~ %s, %s ~ %s",v1,v1.toPolar(imgCenter),v2,v2.toPolar(imgCenter))
 
		# vanish=self._detectVanishingPoints(lines,imgCenter,(v1.toPolar(imgCenter),v2.toPolar(imgCenter)))
 
		#
 
		# # rectify the image
 
		# matrix=self._computeTransformationMatrix(vanish,lines)
 
		# transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
 
		#
 
		# # determine precise board edges
 
		matrix=self._computeTransformationMatrix(lines[0][0],lines[0][-1],lines[1][0],lines[1][-1])
 
		transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
 

	
 
		# determine precise board edges
 

	
 
	def _detectRough(self,img,filename):
 
		corners=self._annotations[filename][0]
 
		(x1,y1,x2,y2)=computeBoundingBox(corners)
 
		log.debug("bounding box: (%s,%s) - (%s,%s)",x1,y1,x2,y2)
 
		return (x1,y1,x2,y2)
 

	
 
	def _sampleColors(self,rect):
 
		(h,w)=rect.shape[:2]
 
		minirect=rect[h//4:3*h//4, w//4:3*w//4]
 
		return kmeans(minirect)
 

	
 
@@ -168,71 +160,43 @@ class BoardDetector:
 

	
 
		if white is not None:
 
			maskW=cv.inRange(quantized,white-unit,white+unit)
 
			distTransform=cv.distanceTransform(maskW,cv.DIST_L2,5)
 
			maskW=cv.inRange(distTransform,6,20)
 
			show(maskW,"white areas")
 
		else: maskW=np.zeros(quantized.shape[:2],dtype=np.uint8)
 

	
 
		stones=cv.bitwise_or(maskB,maskW)
 
		show(stones,"black and white areas")
 
		return stones
 

	
 
	def _printLines(self,lines,allPoints,img):
 
		for (i,line) in enumerate(lines):
 
			img_=np.copy(img)
 
			points=list(line.getSortedPoints())
 
			(a,b)=max(((a,b) for a in points for b in points if a<b),key=lambda ab: ab[0].dist(ab[1]))
 
			(xa,ya)=a
 
			(xb,yb)=b
 
			points.sort(key=lambda p: a.dist(p))
 
			cv.line(img_,(int(xa),int(ya)),(int(xb),int(yb)),(255,255,0),1)
 
			cv.imwrite("/tmp/{0}.png".format(i),img_)
 
			pointDists=",".join(str(round(p1.dist(p2),3)) for (p1,p2) in zip(points[:-1],points[1:]))
 
			log.debug("\t".join(map(str,[i,line,line.score(allPoints),pointDists])))
 

	
 
	def _detectVanishingPoints(self,lines,imgCenter,trueVs):
 
		polarHough=PolarHough(math.pi/180,10)
 
		for (i,ab) in enumerate(lines):
 
			for cd in lines[i+1:]:
 
				point=ab.intersect(cd)
 
				if 0<=point.x<=self._rectW and 0<=point.y<=self._rectH: continue
 
				# log.debug("%s -> %s",point,point.toPolar(imgCenter))
 
				polarHough.put(point.toPolar(imgCenter))
 
		vanish=[EPoint.fromPolar(p,imgCenter) for p in polarHough.extract(2,trueVs)]
 
		log.debug(vanish)
 
		return vanish
 

	
 
	def _computeTransformationMatrix(self,vanish,lines):
 
		(v1,v2)=vanish
 
		(p,r)=sorted(lines,key=lambda p: point2lineDistance(p.a,p.b,v1))[:2]
 
		(q,s)=sorted(lines,key=lambda p: point2lineDistance(p.a,p.b,v2))[:2]
 
		(a,b,c,d)=Corners([p.intersect(q),q.intersect(r),r.intersect(s),s.intersect(p)]) # canonize the abcd order
 
	def _computeTransformationMatrix(self,p,q,r,s): # p || q, r || s
 
		(a,b,c,d)=Corners([p.intersect(r),p.intersect(s),q.intersect(r),q.intersect(s)]) # canonize the abcd order
 
		a_=EPoint(b.x,min(a.y,d.y))
 
		b_=EPoint(b.x,max(b.y,c.y))
 
		c_=EPoint(c.x,max(b.y,c.y))
 
		d_=EPoint(c.x,min(a.y,d.y))
 
		abcd=[list(point) for point in (a,b,c,d)]
 
		abcd_=[list(point) for point in (a_,b_,c_,d_)]
 
		log.debug("abcd: %s ->",(a,b,c,d))
 
		log.debug("-> abcd_: %s",(a_,b_,c_,d_))
 
		matrix=cv.getPerspectiveTransform(np.float32(abcd),np.float32(abcd_))
 
		log.debug("transformation matrix: %s",matrix)
 

	
 
		rect=np.copy(self._rect)
 
		for point in (a,b,c,d):
 
			cv.drawMarker(rect,(int(point.x),int(point.y)),(0,255,255),cv.MARKER_TILTED_CROSS)
 
		show(rect)
 
		transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
 
		show(transformed)
 
		show(transformed,"rectified image")
 

	
 
		return matrix
 

	
 
	def _drawLine(self,img,line):
 
		(h,w)=img.shape[:2]
 
		corners=[EPoint(0,0),EPoint(w,0),EPoint(0,h),EPoint(w,h)] # NW NE SW SE
 
		borders=[
 
			[Line.fromPoints(corners[0],corners[1]), Line.fromPoints(corners[2],corners[3])], # N S
 
			[Line.fromPoints(corners[0],corners[2]), Line.fromPoints(corners[1],corners[3])] # W E
 
		]
 

	
 
		(a,b)=(line.intersect(borders[0][0]), line.intersect(borders[0][1]))
exp/hough.py
Show inline comments
 
@@ -50,29 +50,31 @@ class HoughTransform:
 

	
 
	def extract(self):
 
		img=self._createImg()
 
		self.show(img)
 
		lines=self._detectLines()
 
		res=[]
 
		i=0
 
		for (score,alpha,beta,peaks) in lines:
 
			log.debug("score: %s",score)
 
			log.debug("alpha, beta: %s, %s",alpha,beta)
 
			self._drawLine(img,alpha,beta,peaks,i)
 

	
 
			res.append([])
 
			keys=self._readLineKeys(alpha,beta)
 
			for k in peaks:
 
				(alphaDeg,d)=keys[k]
 
				line=Line(alphaDeg*math.pi/180,d-self._diagLen//2)
 
				res.append(self._transformOutput(line))
 
				res[-1].append(self._transformOutput(line))
 
			res[-1].sort(key=lambda line: line.d)
 
			i+=1
 

	
 
		self.show(img)
 
		return res
 

	
 
	def update(self,img,weight=1):
 
		start=datetime.now().timestamp()
 
		for (r,row) in enumerate(img):
 
			for (c,pix) in enumerate(row):
 
				if pix==0: continue
 
				for alphaDeg in range(0,180):
 
					d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
0 comments (0 inline, 0 general)