Changeset - 655956f6ba89
[Not reviewed]
default
4 1 5
Laman - 6 years ago 2019-05-04 16:43:20

training and testing model
6 files changed with 89 insertions and 12 deletions:
0 comments (0 inline, 0 general)
exp/board_detect.py
Show inline comments
 
@@ -225,48 +225,49 @@ class BoardDetector:
 
		d=2*center-b
 
		# abort unfitting sizes
 
		if not all(0<=point.x<self._rectW and 0<=point.y<self._rectH for point in (a,b,c,d)):
 
			return None
 
		if any(g.dist(h)<19*10 for (g,h) in [(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)]):
 
			return None
 
		(a,b,c,d)=Corners([a,b,c,d])
 
		rows=[]
 
		cols=[]
 
		for j in range(19):
 
			rows.append(Line.fromPoints((a*(18-j)+b*j)/18,(d*(18-j)+c*j)/18))
 
			cols.append(Line.fromPoints((a*(18-j)+d*j)/18,(b*(18-j)+c*j)/18))
 
		return (rows,cols)
 

	
 
	def _scoreGrid(self,lines):
 
		(p,q,r,s)=(lines[0][0],lines[0][-1],lines[-1][0],lines[-1][-1])
 
		corners=(p.intersect(r),p.intersect(s),q.intersect(r),q.intersect(s))
 
		origCorners=[c.transform(self._inverseMatrix) for c in corners]
 
		# must fit
 
		if not all(0<=c.x<self._rectW and 0<=c.y<self._rectH for c in origCorners):
 
			return 0
 
		return sum(self._hough.scoreLine(p.transform(self._inverseMatrix)) for p in itertools.chain(*lines))
 

	
 
	def detectPosition(self,img):
 
		if not self.grid: return None
 
		(rows,cols)=self.grid
 
		intersections=[[row.intersect(col) for col in cols] for row in rows]
 
		position=[[self._detectStoneAt(img,point) for point in row] for row in intersections]
 
		log.debug("detected position:\n%s","\n".join("".join(row) for row in position))
 
		return position
 

	
 
	def _detectStoneAt(self,img,intersection):
 
		(height,width)=img.img.shape[:2]
 
		(x,y)=map(int,intersection)
 
		scores=[0,0,0]
 
		for xi in range(x-2,x+3):
 
			if xi<0 or xi>=width: continue
 
			for yi in range(y-2,y+3):
 
				if yi<0 or yi>=height: continue
 
				scores[img.get(xi,yi)]+=1
 
		return sorted(list(zip(scores,"XO.")))[-1][1]
 

	
 
	def _drawLine(self,img,line,color=None):
 
		if not color: color=[0,255,0]
 
		(h,w)=img.shape[:2]
 
		corners=[EPoint(0,0),EPoint(w,0),EPoint(0,h),EPoint(w,h)] # NW NE SW SE
 
		borders=[
 
			[Line.fromPoints(corners[0],corners[1]), Line.fromPoints(corners[2],corners[3])], # N S
 
			[Line.fromPoints(corners[0],corners[2]), Line.fromPoints(corners[1],corners[3])] # W E
exp/kerokero/__init__.py
Show inline comments
 
file renamed from exp/keras/__init__.py to exp/kerokero/__init__.py
exp/kerokero/prepare_data.py
Show inline comments
 
file renamed from exp/keras/prepare_data.py to exp/kerokero/prepare_data.py
 
import os
 
import sys
 
import re
 
import random
 
import itertools
 

	
 
import numpy as np
 
import cv2 as cv
 

	
 
sys.path.append("../exp")
 
sys.path.append("..")
 
sys.path.append("../../src")
 
from annotations import DataFile,computeBoundingBox,Corners
 
from geometry import Line
 
from keras.transformation_matrices import getIdentity,getRotation,getTranslation,getScale,getMirroring,getProjection
 
from kerokero.transformation_matrices import getIdentity,getRotation,getTranslation,getScale,getMirroring,getProjection
 

	
 
random.seed(361)
 

	
 

	
 
class Sample:
 
	SIDE=256
 
	SIDE=224
 

	
 
	def __init__(self,img,grid):
 
		self.img=img
 
		self.grid=grid
 

	
 
	def transform(self):
 
		center=self._getCenter()
 
		m=getIdentity()
 
		t1=getTranslation(-center.x,-center.y)
 
		proj=getProjection()
 
		rot=getRotation()
 
		mir=getMirroring()
 
		for mi in [t1,mir,proj,rot]:
 
			m=np.matmul(mi,m)
 
		m=np.matmul(self._computeCrop(m),m)
 
		img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE))
 
		grid=Corners(c.transform(m) for c in self.grid)
 
		Sample(img,grid).show()
 
		return (img,list(itertools.chain.from_iterable(grid)))
 

	
 
	def _getCenter(self):
 
		(a,b,c,d)=self.grid
 
		p=Line.fromPoints(a,c)
 
		q=Line.fromPoints(b,d)
 
		return p.intersect(q)
 

	
 
	def _computeCrop(self,m):
 
		grid=Corners(c.transform(m) for c in self.grid)
 
		(x1,y1,x2,y2)=computeBoundingBox(grid)
 
		(wg,hg)=(x2-x1,y2-y1)
 
		(left,top,right,bottom)=[random.uniform(0.05,0.2) for i in range(4)]
 
		t2=getTranslation(left*wg-x1, top*hg-y1)
 
		scale=getScale(self.SIDE/(wg*(1+left+right)), self.SIDE/(hg*(1+top+bottom)))
 
		return np.matmul(scale,t2)
 

	
 
	def show(self):
 
		img=np.copy(self.img)
 
		for c in self.grid:
 
			cv.circle(img,(int(c.x),int(c.y)),3,[0,255,0],-1)
 
		show(img)
 

	
 

	
 
def traverseDirs(root):
 
	stack=[root]
 
	while len(stack)>0:
 
		d=stack.pop()
 
		contents=sorted(os.scandir(d),key=lambda f: f.name,reverse=True)
 
		if any(f.name=="annotations.json.gz" for f in contents):
 
			print(d)
 
			yield d
 
		for f in contents:
 
			if f.is_dir(): stack.append(f.path)
 

	
 

	
 
def harvestDir(path):
 
	annotations=DataFile(os.path.join(path,"annotations.json.gz"))
 
	imgFilter=lambda f: f.is_file() and re.match(r".*\.(jpg|jpeg|png|gif)$", f.name.lower())
 
	files=sorted(filter(imgFilter,os.scandir(path)),key=lambda f: f.name)
 
	boards=annotations["."]
 
	for f in files:
 
		img=cv.imread(f.path)
 
		img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
 
		for b in boards:
 
			sample=Sample(img,b.grid)
 
			sample.transform()
 
			(img,label)=sample.transform()
 
			yield (img,label)
 

	
 

	
 
def loadDataset(root):
 
	testRatio=0.1
 
	trainRatio=1-testRatio
 
	images=[]
 
	labels=[]
 
	for d in traverseDirs(root):
 
		for (img,label) in harvestDir(d):
 
			images.append(img)
 
			labels.append(label)
 
	n=len(images)
 
	keys=list(range(n))
 
	random.shuffle(keys)
 
	images=[images[k] for k in keys]
 
	labels=[labels[k] for k in keys]
 
	m=int(n*trainRatio)
 
	return (
 
		(np.uint8(images[:m]),np.float32(labels[:m])),
 
		(np.uint8(images[m:]),np.float32(labels[m:]))
 
	)
 

	
 

	
 
def show(img,filename="x"):
 
	cv.imshow(filename,img)
 
	cv.waitKey(0)
 
	cv.destroyAllWindows()
 

	
 

	
 
if __name__=="__main__":
 
	root=sys.argv[1]
 
	for d in traverseDirs(root):
 
		harvestDir(d)
exp/kerokero/test.py
Show inline comments
 
new file 100644
 
import argparse
 

	
 
import numpy as np
 
from keras.models import load_model
 

	
 
from prepare_data import loadDataset,Sample
 
from analyzer.epoint import EPoint
 
from analyzer.corners import Corners
 

	
 

	
 
parser=argparse.ArgumentParser()
 
parser.add_argument("model")
 
parser.add_argument("data_dir")
 
args=parser.parse_args()
 

	
 
model=load_model(args.model)
 

	
 
print("loading data...")
 
((trainImages,trainLabels),(testImages,testLabels))=loadDataset(args.data_dir)
 
print("done")
 

	
 
for img in testImages:
 
	label=model.predict(np.reshape(img,(1,224,224)))
 
	print(label)
 
	points=[]
 
	for i in range(4):
 
		points.append(EPoint(label[0][i*2],label[0][i*2+1]))
 
	corners=Corners(points)
 
	sample=Sample(np.uint8(img),corners)
 
	sample.show()
exp/kerokero/train.py
Show inline comments
 
file renamed from exp/keras/train.py to exp/kerokero/train.py
 
import argparse
 

	
 
from keras.layers import Conv2D,Dropout,Dense,Flatten
 
from keras.models import Sequential
 
from keras.models import Sequential,load_model
 

	
 
from prepare_data import loadDataset
 

	
 

	
 
model = Sequential([
 
	Flatten(input_shape=(96,96)),
 
parser=argparse.ArgumentParser()
 
parser.add_argument("data_dir")
 
parser.add_argument("--load_model")
 
parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5")
 
parser.add_argument("--epochs",type=int,default=100)
 
parser.add_argument("--initial_epoch",type=int,default=0)
 
args=parser.parse_args()
 

	
 
model=Sequential([
 
	Flatten(input_shape=(224,224)),
 
	Dense(128, activation="relu"),
 
	Dropout(0.1),
 
	Dense(64, activation="relu"),
 
	Dense(30)
 
	Dense(8)
 
])
 

	
 
model.compile(
 
	optimizer='adam',
 
	loss='mse',
 
	metrics=['mae','accuracy']
 
)
 
if args.load_model:
 
	model=load_model(args.load_model)
 

	
 
model.fit(X_train,y_train,epochs = 500,batch_size = 128,validation_split = 0.2)
 
print("loading data...")
 
((trainImages,trainLabels),(testImages,testLabels))=loadDataset(args.data_dir)
 
print("done")
 

	
 
for i in range(args.initial_epoch,args.epochs//10):
 
	model.fit(trainImages,trainLabels,epochs=(i+1)*10,initial_epoch=i*10,batch_size=128,validation_split=1/9)
 
	model.save(args.save_model.format(i+1))
 
print(model.evaluate(testImages,testLabels))
exp/kerokero/transformation_matrices.py
Show inline comments
 
file renamed from exp/keras/transformation_matrices.py to exp/kerokero/transformation_matrices.py
 
@@ -26,31 +26,31 @@ def getTranslation(dx,dy):
 
		[1,0,dx],
 
		[0,1,dy],
 
		[0,0,1]
 
	])
 

	
 

	
 
def getScale(kx,ky=0):
 
	if not ky: ky=kx
 
	return np.float32([
 
		[kx,0,0],
 
		[0,ky,0],
 
		[0,0,1]
 
	])
 

	
 

	
 
def getMirroring():
 
	return np.float32([
 
		[random.choice((1,-1)),0,0],
 
		[0,1,0],
 
		[0,0,1]
 
	])
 

	
 

	
 
def getProjection():
 
	dx=random.uniform(-0.001,0.001)
 
	dy=random.uniform(-0.001,0.001)
 
	dx=random.uniform(-0.0005,0.0005)
 
	dy=random.uniform(-0.0005,0.0005)
 
	return np.float32([
 
		[1,0,0],
 
		[0,1,0],
 
		[dx,dy,1]
 
	])
0 comments (0 inline, 0 general)