Files
@ f1f8a2421f92
Branch filter:
Location: OneEye/exp/kerokero/train.py - annotation
f1f8a2421f92
3.2 KiB
text/x-python
updated readme
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | c934d44cdf5c 247811dfb9be c934d44cdf5c 655956f6ba89 9483b964f560 655956f6ba89 9483b964f560 006c6f1aab13 ecf98a415d97 4381957e967e 006c6f1aab13 006c6f1aab13 655956f6ba89 c934d44cdf5c 247811dfb9be 006c6f1aab13 006c6f1aab13 006c6f1aab13 655956f6ba89 655956f6ba89 9483b964f560 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 d9cf0ed8e7fd 655956f6ba89 655956f6ba89 dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc 655956f6ba89 dd45e200a0dc dd45e200a0dc ecf98a415d97 ecf98a415d97 ecf98a415d97 006c6f1aab13 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 ecf98a415d97 ecf98a415d97 ecf98a415d97 9483b964f560 ecf98a415d97 dd45e200a0dc 006c6f1aab13 dd45e200a0dc 006c6f1aab13 dd45e200a0dc dd45e200a0dc dd45e200a0dc ecf98a415d97 655956f6ba89 655956f6ba89 655956f6ba89 9483b964f560 9483b964f560 5f42b982809c 247811dfb9be 5f42b982809c 247811dfb9be 9483b964f560 655956f6ba89 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 4381957e967e 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 247811dfb9be 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 4381957e967e 247811dfb9be | import os
import math
from time import time
import argparse
import logging as log
import numpy as np
from keras.layers import Conv2D,Dropout,Dense,Flatten,MaxPooling2D,BatchNormalization,GlobalAveragePooling2D,Reshape
from keras.models import Sequential,load_model
from keras.callbacks import TensorBoard,ModelCheckpoint
import keras.losses
import keras.metrics
import config as cfg
from k_util import averageDistance,generateData
keras.losses.averageDistance=averageDistance
keras.metrics.averageDistance=averageDistance
parser=argparse.ArgumentParser()
parser.add_argument("data")
parser.add_argument("--load_model")
parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5")
parser.add_argument("--epochs",type=int,default=100)
parser.add_argument("--initial_epoch",type=int,default=0)
parser.add_argument("--log_dir",default="/tmp/tflogs")
args=parser.parse_args()
def createFullyConnected():
model=Sequential([
Flatten(input_shape=(224,224)),
Dense(128, activation="relu"),
Dropout(0.1),
Dense(64, activation="relu"),
Dense(8)
])
model.compile(
optimizer='adam',
loss='mse',
metrics=['mae','accuracy']
)
return model
def createCNN():
model=Sequential()
model.add(BatchNormalization(input_shape=(224,224,1)))
model.add(Conv2D(24,(5,5),padding="same",kernel_initializer="he_normal",activation="relu",input_shape=(224,224,1),data_format="channels_last"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(36,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(48,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(GlobalAveragePooling2D())
model.add(Dense(500,activation="relu"))
model.add(Dense(90,activation="relu"))
model.add(Dense(8))
model.add(Reshape((4,2)))
model.compile(optimizer="rmsprop",loss=averageDistance,metrics=["mae","accuracy"])
return model
model=createCNN()
if args.load_model:
model=load_model(args.load_model)
log.info("loading data...")
with np.load(args.data) as data:
trainImages=(np.float32(data["trainImages"])/128-1).reshape((-1,224,224,1))
trainLabels=data["trainLabels"].reshape((-1,4,2))
testImages=(np.float32(data["testImages"])/128-1).reshape((-1,224,224,1))
testLabels=data["testLabels"].reshape((-1,4,2))
log.info("done")
n=len(trainImages)
k=round(n*0.9)
n_=n-k
(trainImages,valImages)=(np.float32(trainImages[:k]),np.float32(trainImages[k:]))
(trainLabels,valLabels)=(np.float32(trainLabels[:k]),np.float32(trainLabels[k:]))
tensorboard=TensorBoard(log_dir=os.path.join(args.log_dir,"{}".format(time())))
checkpoint=ModelCheckpoint(args.save_model,monitor="val_loss",period=10)
model.fit_generator(
generateData(trainImages,trainLabels,batch_size=20),
epochs=args.epochs,
initial_epoch=args.initial_epoch,
steps_per_epoch=math.ceil(n_/20),
validation_data=generateData(valImages,valLabels,batch_size=20),
validation_steps=math.ceil(k/20),
callbacks=[tensorboard,checkpoint]
)
log.info(model.evaluate(testImages,testLabels))
|