Files
@ dd45e200a0dc
Branch filter:
Location: OneEye/exp/kerokero/transformation_matrices.py - annotation
dd45e200a0dc
733 B
text/x-python
convolution neural network model
655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 | import math
import random
import numpy as np
def getIdentity():
return np.float32([
[1,0,0],
[0,1,0],
[0,0,1]
])
def getRotation():
alpha=random.random()*2*math.pi
return np.float32([
[math.cos(alpha),math.sin(alpha),0],
[-math.sin(alpha),math.cos(alpha),0],
[0,0,1]
])
def getTranslation(dx,dy):
return np.float32([
[1,0,dx],
[0,1,dy],
[0,0,1]
])
def getScale(kx,ky=0):
if not ky: ky=kx
return np.float32([
[kx,0,0],
[0,ky,0],
[0,0,1]
])
def getMirroring():
return np.float32([
[random.choice((1,-1)),0,0],
[0,1,0],
[0,0,1]
])
def getProjection():
dx=random.uniform(-0.0005,0.0005)
dy=random.uniform(-0.0005,0.0005)
return np.float32([
[1,0,0],
[0,1,0],
[dx,dy,1]
])
|