Files @ d07ae4bfa145
Branch filter:

Location: OneEye/exp/hough.py - annotation

Laman
transforming points and lines with a matrix
6d4447a2e050
6d4447a2e050
6d4447a2e050
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
6f867d8eac54
6f867d8eac54
1ceee1fdf122
275f7307dd32
6f867d8eac54
6f867d8eac54
184d592b02dd
184d592b02dd
90090fca08f9
90090fca08f9
90090fca08f9
275f7307dd32
275f7307dd32
275f7307dd32
90090fca08f9
5e5a8c4642c5
5e5a8c4642c5
90090fca08f9
275f7307dd32
275f7307dd32
90090fca08f9
5e5a8c4642c5
5e5a8c4642c5
6aace8f39e75
5e5a8c4642c5
5e5a8c4642c5
275f7307dd32
90090fca08f9
90090fca08f9
6f867d8eac54
ffa9f7f12374
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
ffa9f7f12374
1ceee1fdf122
1ceee1fdf122
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
275f7307dd32
5e5a8c4642c5
184d592b02dd
184d592b02dd
5e5a8c4642c5
184d592b02dd
275f7307dd32
275f7307dd32
5e5a8c4642c5
184d592b02dd
79b929f58012
184d592b02dd
184d592b02dd
184d592b02dd
739df5e211d8
79b929f58012
6aace8f39e75
5e5a8c4642c5
90090fca08f9
1ceee1fdf122
184d592b02dd
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
ffa9f7f12374
ffa9f7f12374
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
739df5e211d8
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
275f7307dd32
275f7307dd32
739df5e211d8
739df5e211d8
5e5a8c4642c5
275f7307dd32
5e5a8c4642c5
5e5a8c4642c5
275f7307dd32
275f7307dd32
5e5a8c4642c5
275f7307dd32
275f7307dd32
275f7307dd32
275f7307dd32
739df5e211d8
275f7307dd32
739df5e211d8
5e5a8c4642c5
275f7307dd32
275f7307dd32
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
739df5e211d8
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
ffa9f7f12374
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
import sys
sys.path.append("../src")

import math
from datetime import datetime
import logging as log

import numpy as np
import scipy.optimize
import scipy.signal
import cv2 as cv

from geometry import EPoint,Line

DEBUG=True


class LineBag:
	def __init__(self):
		self._lines=[]

	def put(self,score,alpha,beta,peaks):
		self._lines.append((score,alpha,beta,peaks))

	def pull(self,count):
		self._lines.sort(reverse=True)
		res=[]
		for (score,alpha,beta,peaks) in self._lines:
			if any(abs(alpha-gamma)<10 and abs(beta-delta)<10 for (_,gamma,delta,_) in res): continue
			# avoid intersecting lines
			if any((beta-delta)!=0 and (alpha-gamma)/(beta-delta)<0 for (_,gamma,delta,_) in res): continue
			res.append((score,alpha,beta,peaks))
			if len(res)>=count: break
		return res


class HoughTransform:
	"""Find line sequences with Hough transform.

	Uses usual image coordinates on input and output, with [0,0] in the upper left corner and [height-1,width-1] in the lower right.
	However, internally it uses the usual cartesian coordinates, centered at the image center. [-w/2,-h/2] in the upper left and [w/2,h/2] in the lower right."""
	def __init__(self,img):
		self._angleBandwidth=30 # degrees

		(h,w)=img.shape[:2]
		self._diagLen=int(np.sqrt(h**2+w**2))+1
		self._center=(w//2,h//2)
		self._acc=np.zeros((180,self._diagLen),dtype=np.int32)

		self.update(img)

	def extract(self):
		img=self._createImg()
		self.show(img)
		lines=self._detectLines()
		res=[]
		i=0
		for (score,alpha,beta,peaks) in lines:
			log.debug("score: %s",score)
			log.debug("alpha, beta: %s, %s",alpha,beta)
			self._drawLine(img,alpha,beta,peaks,i)

			res.append([])
			keys=self._readLineKeys(alpha,beta)
			for k in peaks:
				(alphaDeg,d)=keys[k]
				line=Line(alphaDeg*math.pi/180,d-self._diagLen//2)
				res[-1].append(self._transformOutput(line))
			res[-1].sort(key=lambda line: line.d if line.alpha<math.pi else -line.d)
			i+=1

		self.show(img)
		return res

	def update(self,img,weight=1):
		start=datetime.now().timestamp()
		for (r,row) in enumerate(img):
			for (c,pix) in enumerate(row):
				if pix==0: continue
				for alphaDeg in range(0,180):
					d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
					self._acc[(alphaDeg,d)]+=weight
		log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))

	def show(self,img=None):
		if img is None: img=self._createImg()
		show(img,"Hough transform accumulator")

	def _computeDist(self,x,y,alphaDeg):
		alphaRad=alphaDeg*math.pi/180
		(x0,y0)=self._center
		(dx,dy)=(x-x0,y0-y)
		d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
		return round(d)

	def _detectLines(self):
		bag=LineBag()
		for alpha in range(0,180+60,2):
			for beta in range(max(alpha-60,0),min(alpha+60,180+60),2):
				accLine=[self._acc[key] for key in self._readLineKeys(alpha,beta)]
				(peaks,props)=scipy.signal.find_peaks(accLine,prominence=0)
				(prominences,peaks)=zip(*sorted(zip(props["prominences"],peaks),reverse=True)[:19])
				bag.put(sum(prominences),alpha,beta,peaks)
		return bag.pull(2)

	def _readLineKeys(self,alpha,beta):
		n=self._diagLen-1
		res=[]
		for i in range(n+1):
			k=round((alpha*(n-i)+beta*i)/n)
			if k>=180:
				k=k%180
				i=n-i
			res.append((k,i))
		return res

	def _transformOutput(self,line):
		(x,y)=self._center
		basis=EPoint(-x,y)
		shiftedLine=line.shiftBasis(basis)
		reflectedLine=Line(math.pi*2-shiftedLine.alpha,shiftedLine.d)
		log.debug("%s -> %s",line,reflectedLine)
		return reflectedLine

	def _createImg(self):
		maxVal=self._acc.max()
		arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
		img=np.concatenate((arr,arr,arr),axis=2)

		(h,w)=img.shape[:2]

		for x in range(0,w,4): # y axis
			img[h//2,x]=[255,255,255]
		for y in range(0,h,4):
			img[y,w//2]=[255,255,255]

		return img

	def _drawLine(self,img,alpha,beta,peaks,colorKey):
		colors=[[0,255,255],[255,0,255],[255,255,0]]
		color=colors[colorKey]
		(h,w)=img.shape[:2]
		keys=self._readLineKeys(alpha,beta)
		for (y,x) in keys:
			if x%3!=0: continue
			if y<0 or y>=h: continue
			img[y,x]=color
		for k in peaks:
			(y,x)=keys[k]
			cv.drawMarker(img,(x,y),color,cv.MARKER_TILTED_CROSS,8)


def show(img,filename="x"):
	cv.imshow(filename,img)
	cv.waitKey(0)
	cv.destroyAllWindows()


def filterVert(edges):
	kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
	edges = cv.erode(edges,kernel)
	kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
	edges=cv.dilate(edges,kernel)
	return edges

def filterHor(edges):
	kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
	edges = cv.erode(edges,kernel)
	kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
	edges=cv.dilate(edges,kernel)
	return edges

def filterDiag(edges):
	kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
	edges1 = cv.erode(edges,kernel)
	kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
	edges1=cv.dilate(edges1,kernel)

	kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
	edges2 = cv.erode(edges,kernel)
	kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
	edges2=cv.dilate(edges2,kernel)

	return edges1+edges2

def prepareEdgeImg(img):
	gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
	show(gray,"greyscale image")
	edges=cv.Canny(gray,70,130)
	show(edges,"Canny edge detector")
	edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
	show(edges,"kernel filtered edges")
	return edges