Files
@ d07ae4bfa145
Branch filter:
Location: OneEye/exp/board_detect.py - annotation
d07ae4bfa145
7.0 KiB
text/x-python
transforming points and lines with a matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 79b929f58012 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 184d592b02dd 6aace8f39e75 353129d558d3 ffa9f7f12374 353129d558d3 7df1503a4ca6 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 c3345c5afb6d c3345c5afb6d 353129d558d3 c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 9433c7ab2989 9433c7ab2989 9433c7ab2989 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 ffa9f7f12374 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 7df1503a4ca6 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 7df1503a4ca6 353129d558d3 353129d558d3 c3345c5afb6d 353129d558d3 28c6f89a3a7e 28c6f89a3a7e 28c6f89a3a7e 28c6f89a3a7e 28c6f89a3a7e 353129d558d3 353129d558d3 c3345c5afb6d 353129d558d3 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 79b929f58012 ffa9f7f12374 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 79b929f58012 184d592b02dd 184d592b02dd 353129d558d3 ffa9f7f12374 79b929f58012 79b929f58012 79b929f58012 79b929f58012 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 6aace8f39e75 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 c3345c5afb6d 353129d558d3 c3345c5afb6d 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 c3345c5afb6d 353129d558d3 c3345c5afb6d c3345c5afb6d 28c6f89a3a7e c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d 28c6f89a3a7e c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d c3345c5afb6d 28c6f89a3a7e 353129d558d3 ffa9f7f12374 353129d558d3 353129d558d3 79b929f58012 79b929f58012 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 79b929f58012 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 6aace8f39e75 6aace8f39e75 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 6aace8f39e75 184d592b02dd 7df1503a4ca6 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 | import sys
sys.path.append("../src")
import os
import random
import itertools
import logging as log
import cv2 as cv
import numpy as np
import scipy.cluster
import scipy.ndimage
import scipy.signal
from geometry import Line
from ransac import DiagonalRansac
from annotations import DataFile,computeBoundingBox
from hough import show,prepareEdgeImg,HoughTransform
from analyzer.epoint import EPoint
from analyzer.corners import Corners
random.seed(361)
log.basicConfig(level=log.DEBUG,format="%(message)s")
def kmeans(img):
arr=np.reshape(img,(-1,3)).astype(np.float)
wood=[193,165,116]
(centers,distortion)=scipy.cluster.vq.kmeans(arr,3)
log.debug("k-means centers: %s",centers)
(black,empty,white)=sorted(centers,key=sum)
if np.linalg.norm(black)>np.linalg.norm(black-wood):
black=None
if np.linalg.norm(white-[255,255,255])>np.linalg.norm(white-wood):
white=None
log.debug("black, white: %s, %s",black,white)
return (black,white,centers)
def quantize(img,centers):
origShape=img.shape
data=np.reshape(img,(-1,3))
(keys,dists)=scipy.cluster.vq.vq(data,centers)
pixels=np.array([centers[k] for k in keys],dtype=np.uint8).reshape(origShape)
return pixels
def filterStones(contours,bwImg,stoneDims):
contourImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
res=[]
for (i,c) in enumerate(contours):
keep=True
moments=cv.moments(c)
center=(moments["m10"]/(moments["m00"] or 1), moments["m01"]/(moments["m00"] or 1))
area=cv.contourArea(c)
(x,y,w,h)=cv.boundingRect(c)
if w>stoneDims[0] or h>stoneDims[1]*1.5 or w<2 or h<2:
cv.drawMarker(contourImg,tuple(map(int,center)),(0,0,255),cv.MARKER_TILTED_CROSS,12)
keep=False
coverage1=area/(w*h or 1)
hull=cv.convexHull(c)
coverage2=area/(cv.contourArea(hull) or 1)
# if coverage2<0.8:
# cv.drawMarker(contourImg,tuple(map(int,center)),(0,127,255),cv.MARKER_DIAMOND,12)
# keep=False
if keep:
res.append((EPoint(*center),c))
cv.drawMarker(contourImg,tuple(map(int,center)),(255,0,0),cv.MARKER_CROSS)
log.debug("accepted: %s",len(res))
log.debug("rejected: %s",len(contours)-len(res))
show(contourImg,"accepted and rejected stones")
return res
class BoardDetector:
def __init__(self,annotationsPath):
self._annotations=DataFile(annotationsPath)
self._rectW=0
self._rectH=0
self._rect=None
def __call__(self,img,filename):
# approximately detect the board
(h,w)=img.shape[:2]
log.debug("image dimensions: %s x %s",w,h)
show(img,filename)
(x1,y1,x2,y2)=self._detectRough(img,filename)
rect=img[y1:y2,x1:x2]
self._rectW=x2-x1
self._rectH=y2-y1
self._rect=rect
# quantize colors
(black,white,colors)=self._sampleColors(rect)
quantized=quantize(rect,colors)
gray=cv.cvtColor(rect,cv.COLOR_BGR2GRAY)
edges=cv.Canny(gray,70,130)
show(edges,"edges")
quantized=quantized & (255-cv.cvtColor(edges,cv.COLOR_GRAY2BGR))
show(quantized,"quantized, edges separated")
# detect black and white stones
stones=self._detectStones(quantized,black,white)
# detect lines from edges and stones
edgeImg=prepareEdgeImg(rect)
hough=HoughTransform(edgeImg)
stonesImg=np.zeros((self._rectH,self._rectW),np.uint8)
for (point,c) in stones:
cv.circle(stonesImg,(int(point.x),int(point.y)),2,255,-1)
show(stonesImg,"detected stones")
hough.update(stonesImg,10)
lines=hough.extract()
linesImg=np.copy(rect)
for line in itertools.chain(*lines):
self._drawLine(linesImg,line)
show(linesImg,"detected lines")
# # rectify the image
matrix=self._computeTransformationMatrix(lines[0][0],lines[0][-1],lines[1][0],lines[1][-1])
transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
# determine precise board edges
intersections=[]
for p in lines[0]:
for q in lines[1]:
intersections.append(p.intersect(q))
sack=DiagonalRansac(intersections,19)
diagonals=sack.extract(10,2000)
log.debug("diagonals candidates: %s",diagonals)
for line in diagonals:
self._drawLine(linesImg,line,[0,255,255])
show(linesImg,"diagonals candidates")
def _detectRough(self,img,filename):
corners=self._annotations[filename][0]
(x1,y1,x2,y2)=computeBoundingBox(corners)
log.debug("bounding box: (%s,%s) - (%s,%s)",x1,y1,x2,y2)
return (x1,y1,x2,y2)
def _sampleColors(self,rect):
(h,w)=rect.shape[:2]
minirect=rect[h//4:3*h//4, w//4:3*w//4]
return kmeans(minirect)
def _detectStones(self,quantized,black,white):
(h,w)=quantized.shape[:2]
mask=self._maskStones(quantized,black,white)
stoneDims=(w/19,h/19)
log.debug("stone dims: %s - %s",tuple(x/2 for x in stoneDims),stoneDims)
(contours,hierarchy)=cv.findContours(mask,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
stoneLocs=filterStones(contours,mask,stoneDims)
return stoneLocs
def _maskStones(self,quantized,black,white):
unit=np.array([1,1,1],dtype=np.uint8)
if black is not None:
maskB=cv.inRange(quantized,black-unit,black+unit)
distTransform=cv.distanceTransform(maskB,cv.DIST_L2,5)
maskB=cv.inRange(distTransform,6,20)
show(maskB,"black areas")
else: maskB=np.zeros(quantized.shape[:2],dtype=np.uint8)
if white is not None:
maskW=cv.inRange(quantized,white-unit,white+unit)
distTransform=cv.distanceTransform(maskW,cv.DIST_L2,5)
maskW=cv.inRange(distTransform,6,20)
show(maskW,"white areas")
else: maskW=np.zeros(quantized.shape[:2],dtype=np.uint8)
stones=cv.bitwise_or(maskB,maskW)
show(stones,"black and white areas")
return stones
def _computeTransformationMatrix(self,p,q,r,s): # p || q, r || s
(a,b,c,d)=Corners([p.intersect(r),p.intersect(s),q.intersect(r),q.intersect(s)]) # canonize the abcd order
a_=EPoint(b.x,min(a.y,d.y))
b_=EPoint(b.x,max(b.y,c.y))
c_=EPoint(c.x,max(b.y,c.y))
d_=EPoint(c.x,min(a.y,d.y))
abcd=[list(point) for point in (a,b,c,d)]
abcd_=[list(point) for point in (a_,b_,c_,d_)]
log.debug("abcd: %s ->",(a,b,c,d))
log.debug("-> abcd_: %s",(a_,b_,c_,d_))
matrix=cv.getPerspectiveTransform(np.float32(abcd),np.float32(abcd_))
log.debug("transformation matrix: %s",matrix)
rect=np.copy(self._rect)
for point in (a,b,c,d):
cv.drawMarker(rect,(int(point.x),int(point.y)),(0,255,255),cv.MARKER_TILTED_CROSS)
show(rect)
transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
show(transformed,"rectified image")
return matrix
def _drawLine(self,img,line,color=None):
if not color: color=[0,255,0]
(h,w)=img.shape[:2]
corners=[EPoint(0,0),EPoint(w,0),EPoint(0,h),EPoint(w,h)] # NW NE SW SE
borders=[
[Line.fromPoints(corners[0],corners[1]), Line.fromPoints(corners[2],corners[3])], # N S
[Line.fromPoints(corners[0],corners[2]), Line.fromPoints(corners[1],corners[3])] # W E
]
(a,b)=(line.intersect(borders[0][0]), line.intersect(borders[0][1]))
log.debug("%s %s",line,(a,b))
if not a or not b:
(a,b)=(line.intersect(borders[1][0]), line.intersect(borders[1][1]))
log.debug("* %s %s",line,(a,b))
if any(abs(x)>10**5 for x in [*a,*b]):
log.debug("ignored")
return
cv.line(img,(int(a.x),int(a.y)),(int(b.x),int(b.y)),color)
if __name__=="__main__":
detector=BoardDetector(sys.argv[2])
filepath=sys.argv[1]
filename=os.path.basename(filepath)
img=cv.imread(filepath)
detector(img,filename)
|