Files @ c3345c5afb6d
Branch filter:

Location: OneEye/exp/hough.py - annotation

Laman
more robust color handling
6d4447a2e050
6d4447a2e050
6d4447a2e050
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
6f867d8eac54
6f867d8eac54
1ceee1fdf122
275f7307dd32
6f867d8eac54
6f867d8eac54
6d4447a2e050
6f867d8eac54
90090fca08f9
90090fca08f9
90090fca08f9
275f7307dd32
275f7307dd32
275f7307dd32
90090fca08f9
5e5a8c4642c5
5e5a8c4642c5
90090fca08f9
275f7307dd32
275f7307dd32
90090fca08f9
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
275f7307dd32
90090fca08f9
90090fca08f9
6f867d8eac54
ffa9f7f12374
ffa9f7f12374
1ceee1fdf122
1ceee1fdf122
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
275f7307dd32
5e5a8c4642c5
275f7307dd32
5e5a8c4642c5
5e5a8c4642c5
275f7307dd32
275f7307dd32
5e5a8c4642c5
5e5a8c4642c5
90090fca08f9
1ceee1fdf122
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
1ceee1fdf122
ffa9f7f12374
6d4447a2e050
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
9433c7ab2989
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
ffa9f7f12374
6d4447a2e050
6d4447a2e050
6d4447a2e050
1ceee1fdf122
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
9433c7ab2989
6d4447a2e050
6d4447a2e050
6d4447a2e050
6d4447a2e050
275f7307dd32
275f7307dd32
c3345c5afb6d
c3345c5afb6d
5e5a8c4642c5
275f7307dd32
5e5a8c4642c5
5e5a8c4642c5
275f7307dd32
275f7307dd32
5e5a8c4642c5
275f7307dd32
275f7307dd32
275f7307dd32
275f7307dd32
275f7307dd32
275f7307dd32
275f7307dd32
5e5a8c4642c5
275f7307dd32
275f7307dd32
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
9433c7ab2989
9433c7ab2989
9433c7ab2989
9433c7ab2989
9433c7ab2989
9433c7ab2989
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
90090fca08f9
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
1ceee1fdf122
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
5e5a8c4642c5
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
90090fca08f9
6d4447a2e050
6d4447a2e050
90090fca08f9
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
6f867d8eac54
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
ffa9f7f12374
891cf60dcb1e
891cf60dcb1e
891cf60dcb1e
891cf60dcb1e
891cf60dcb1e
891cf60dcb1e
891cf60dcb1e
6f867d8eac54
891cf60dcb1e
import sys
sys.path.append("../src")

import math
from datetime import datetime
import logging as log

import numpy as np
import scipy.optimize
import scipy.signal
import cv2 as cv

from analyzer.epoint import EPoint

DEBUG=True


class LineBag:
	def __init__(self):
		self._lines=[]

	def put(self,score,alpha,beta,peaks):
		self._lines.append((score,alpha,beta,peaks))

	def pull(self,count):
		self._lines.sort(reverse=True)
		res=[]
		for (score,alpha,beta,peaks) in self._lines:
			if any(abs(alpha-gamma)<10 and abs(beta-delta)<10 for (_,gamma,delta,_) in res): continue
			if any((beta-delta)!=0 and (alpha-gamma)/(beta-delta)<0 for (_,gamma,delta,_) in res): continue
			res.append((score,alpha,beta,peaks))
			if len(res)>=count: break
		return res


class HoughTransform:
	def __init__(self,img):
		self._angleBandwidth=30 # degrees

		(h,w)=img.shape[:2]
		self._diagLen=int(np.sqrt(h**2+w**2))+1
		self._center=(w//2,h//2)
		self._acc=np.zeros((180,self._diagLen),dtype=np.int32)

		self.update(img)

	def extract(self):
		img=self._createImg()
		self.show(img)
		(ab,cd)=self._detectLines()
		i=0
		for (score,alpha,beta,peaks) in (ab,cd):
			log.debug("score: %s",score)
			log.debug("alpha, beta: %s, %s",alpha,beta)
			self._drawLine(img,alpha,beta,peaks,i)
			i+=1

		self.show(img)

	def update(self,img,weight=1):
		start=datetime.now().timestamp()
		for (r,row) in enumerate(img):
			for (c,pix) in enumerate(row):
				if pix==0: continue
				for alphaDeg in range(0,180):
					d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
					self._acc[(alphaDeg,d)]+=weight
		log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))

	def _computeDist(self,x,y,alphaDeg):
		alphaRad=alphaDeg*math.pi/180
		(x0,y0)=self._center
		(dx,dy)=(x-x0,y-y0)
		d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
		return round(d)

	def _filterClose(self,peaks): # a naive implementation
		"""Discard points with Euclidean distance on the original image lower than 10.
		From such pairs keep only the one with a higher value in the accumulator.
		This can delete a series of points. If a-b and b-c are close and a>b>c, only a is kept."""
		minDist=13
		center=EPoint(*self._center)
		res=[]
		for (alphaDeg,d) in peaks:
			alphaRad=alphaDeg*math.pi/180
			point=EPoint.fromPolar((alphaRad,d),center)
			ctrl=True
			for (betaDeg,e) in peaks:
				betaRad=betaDeg*math.pi/180
				point_=EPoint.fromPolar((betaRad,e),center)
				if point.dist(point_)<minDist and self._acc[(alphaDeg,d)]<self._acc[(betaDeg,e)]:
					ctrl=False
			if ctrl: res.append((alphaDeg,d))
		return res

	def _detectDominantAngles(self,peaks):
		angles=[alpha for (alpha,d) in peaks]
		n=len(angles)
		bandwidth=self._angleBandwidth
		k1=0
		k2=1
		histogram=[]
		while k1<n:
			while (k2<n and angles[k1]+bandwidth>angles[k2]) or (k2>=n and angles[k1]+bandwidth>angles[k2%n]+180):
				k2+=1
			histogram.append((angles[k1],k2-k1))
			k1+=1
		log.debug("angles histogram: %s",histogram)
		dominantAngles=sorted(histogram,key=lambda xy: xy[1],reverse=True)
		alpha=dominantAngles[0]
		dominantAngles=[beta for beta in dominantAngles if 180-bandwidth>abs(alpha[0]-beta[0])>bandwidth]
		beta=dominantAngles[0]
		log.debug("dominant angles: %s, %s",alpha,beta)
		return (alpha[0],beta[0])

	def _detectLines(self):
		bag=LineBag()
		for alpha in range(0,180,2):
			for beta in range(max(alpha-60,0),alpha+60,2):
				accLine=[self._acc[key] for key in self._readLineKeys(alpha,beta)]
				(peaks,props)=scipy.signal.find_peaks(accLine,prominence=0)
				(prominences,peaks)=zip(*sorted(zip(props["prominences"],peaks),reverse=True)[:19])
				bag.put(sum(prominences),alpha,beta,peaks)
		return bag.pull(2)

	def _readLineKeys(self,alpha,beta):
		n=self._diagLen-1
		res=[]
		for i in range(n+1):
			k=round((alpha*(n-i)+beta*i)/n)
			if k<0 or k>=180:
				k=k%180
				i=n+1-i
			res.append((k,i))
		return res

	def _computeGridParams(self,lines):
		log.debug("computing grid parameters for: %s",lines)
		angles=[alpha for (alpha,d) in lines]
		dists=[d for (alpha,d) in lines]
		curve=lambda x,a,b,c,d: a*x**3+b*x**2+c*x+d
		(params,cov)=scipy.optimize.curve_fit(curve,dists,angles)
		log.debug("result: %s",params)
		return params

	def show(self,img=None):
		if img is None: img=self._createImg()

		show(img,"Hough transform accumulator")

	def _createImg(self):
		maxVal=self._acc.max()
		arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
		img=np.concatenate((arr,arr,arr),axis=2)

		(h,w)=img.shape[:2]

		for x in range(0,w,4): # y axis
			img[h//2,x]=[255,255,255]
		for y in range(0,h,4):
			img[y,w//2]=[255,255,255]

		return img

	def _markPeaks(self,img,peaks):
		colors=[[255,0,0],[255,255,0],[0,255,0],[0,255,255],[0,0,255]]
		for (i,(alpha,d)) in enumerate(peaks[:38]):
			cv.drawMarker(img,(d,alpha),colors[i//9],cv.MARKER_TILTED_CROSS)
		return img

	def _drawGridCurve(self,img,params,colorKey=0):
		colors=[[0,255,255],[255,0,255],[255,255,0]]
		color=colors[colorKey]
		(a,b,c,d)=params
		(h,w)=img.shape[:2]
		curve=lambda x: a*x**3+b*x**2+c*x+d
		for x in range(0,w,3):
			y=round(curve(x))
			if y<0 or y>=2*h: continue
			if y<h:	img[y,x]=color
			else: img[y%h,-x]=color

	def _drawLine(self,img,alpha,beta,peaks,colorKey):
		colors=[[0,255,255],[255,0,255],[255,255,0]]
		color=colors[colorKey]
		(h,w)=img.shape[:2]
		keys=self._readLineKeys(alpha,beta)
		for (y,x) in keys:
			if x%3!=0: continue
			if y<0 or y>=h: continue
			img[y,x]=color
		for k in peaks:
			(y,x)=keys[k]
			cv.drawMarker(img,(x,y),color,cv.MARKER_TILTED_CROSS,8)

	def drawLine(self,img,line,colorKey=0):
		colors=[[0,255,255],[255,0,255],[255,255,0]]
		color=colors[colorKey]
		(h,w)=img.shape[:2]
		(a,b,c)=line.toNormal()
		if b==0: return
		for x in range(1,w,3):
			y=round((-c-a*x)/b) + (0 if b>=0 else 180)
			if y<0 or y>=h: continue
			img[y,x]=color


def findPeaks(arr2d): # a naive implementation
	"""Scan 8-neighbourhood and for each peak or top plateau yield one point. For plateaus yield the """
	(h,w)=arr2d.shape
	neighbours=[(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
	for r in range(h):
		for c in range(w):
			if all(r+dr<0 or r+dr>=h or c+dc<0 or c+dc>=w or arr2d[r,c]>arr2d[r+dr,c+dc] or (i<4 and arr2d[r,c]>=arr2d[r+dr,c+dc]) for (i,(dr,dc)) in enumerate(neighbours)):
				yield (r,c)


def show(img,filename="x"):
	cv.imshow(filename,img)
	cv.waitKey(0)
	cv.destroyAllWindows()


def filterVert(edges):
	kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
	edges = cv.erode(edges,kernel)
	kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
	edges=cv.dilate(edges,kernel)
	return edges

def filterHor(edges):
	kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
	edges = cv.erode(edges,kernel)
	kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
	edges=cv.dilate(edges,kernel)
	return edges

def filterDiag(edges):
	kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
	edges1 = cv.erode(edges,kernel)
	kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
	edges1=cv.dilate(edges1,kernel)

	kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
	edges2 = cv.erode(edges,kernel)
	kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
	edges2=cv.dilate(edges2,kernel)

	return edges1+edges2

def prepareEdgeImg(img):
	gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
	show(gray,"greyscale image")
	edges=cv.Canny(gray,70,130)
	show(edges,"Canny edge detector")
	edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
	show(edges,"kernel filtered edges")
	return edges

def houghLines(bwImg):
	colorImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
	lines = cv.HoughLinesP(bwImg,1,np.pi/180,10,minLineLength=10,maxLineGap=40)
	if lines is None: lines=[]
	for line in lines:
		x1,y1,x2,y2 = line[0]
		cv.line(colorImg,(x1,y1),(x2,y2),(0,255,0),1)

	show(colorImg)