Files
@ a00c974af8ae
Branch filter:
Location: OneEye/exp/kerokero/prepare_data.py - annotation
a00c974af8ae
5.4 KiB
text/x-python
experimental single corner Hakugen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | 655956f6ba89 655956f6ba89 655956f6ba89 db53fefbf557 655956f6ba89 a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 a9c02a5b2bfc 655956f6ba89 655956f6ba89 a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 a9c02a5b2bfc a9c02a5b2bfc a9c02a5b2bfc a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 ecf98a415d97 fad34516870e 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 fad34516870e fad34516870e 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 5f42b982809c 655956f6ba89 9c78e6f2e2ea 006c6f1aab13 655956f6ba89 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 a00c974af8ae db53fefbf557 a00c974af8ae db53fefbf557 db53fefbf557 655956f6ba89 ecf98a415d97 655956f6ba89 655956f6ba89 a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 ecf98a415d97 655956f6ba89 655956f6ba89 a9c02a5b2bfc a9c02a5b2bfc db53fefbf557 655956f6ba89 ecf98a415d97 655956f6ba89 655956f6ba89 d9cf0ed8e7fd db53fefbf557 a00c974af8ae a00c974af8ae a00c974af8ae a00c974af8ae 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 a9c02a5b2bfc a9c02a5b2bfc a9c02a5b2bfc a9c02a5b2bfc a9c02a5b2bfc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 5f42b982809c 5f42b982809c 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 | import os
import sys
import re
import math
import random
import logging as log
import numpy as np
import cv2 as cv
import config as cfg
sys.path.append("..")
sys.path.append("../../src")
from annotations import DataFile,computeBoundingBox,Corners,EPoint,Board
from geometry import Line
from kerokero.transformation_matrices import getIdentity,getRotation,getTranslation,getScale,getMirroring,getProjection
random.seed(361)
class Stats:
counts=[0,0,0,0]
class Sample:
SIDE=224
def __init__(self,img,grid):
""":param img: a greyscale image as a 2D np.uint8
:param grid: iterable of 4 EPoints, ie. Corners"""
self.img=img
self.grid=grid
def transform(self):
""":return: (img, grid), where img is a 2D np.float32 with values in (0,1),
grid [(float) x, (float) y, ...], with x, y in (-1,1)"""
center=self._getCenter()
m=getIdentity()
t1=getTranslation(-center.x,-center.y)
proj=getProjection()
rot=getRotation()
mir=getMirroring()
for mi in [t1,mir,proj,rot]:
m=np.matmul(mi,m)
m=np.matmul(self._computeCrop(m),m)
img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE))
img=np.uint8(img)
grid=Corners(c.transform(m) for c in self.grid)
grid=list(map(lambda p: list(2*p/self.SIDE-EPoint(1,1)), grid))
return (img,grid)
def rectify(self):
x1=self.SIDE*0.1
x2=self.SIDE*0.9
abcd=list(map(list,self.grid))
destPoints=[(x1,x1),(x1,x2),(x2,x2),(x2,x1)]
abcd_=list(map(list, (EPoint(x,y)+self._createNoise() for (x,y) in destPoints)))
m=cv.getPerspectiveTransform(np.float32(abcd),np.float32(abcd_))
img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE))
img=np.uint8(img)
grid=Corners(c.transform(m) for c in self.grid)
grid=list(map(lambda p: list(2*p/self.SIDE-EPoint(1,1)), grid))
return (img,grid)
def cut(self):
width=max(p.x for p in self.grid)-min(p.x for p in self.grid)
height=max(p.y for p in self.grid)-min(p.y for p in self.grid)
kx=width/4
ky=height/4
n=self.SIDE
for p in self.grid:
shift=self._createNoise(0.2)
abcd=[[p.x-kx,p.y-ky],[p.x-kx,p.y+ky],[p.x+kx,p.y+ky],[p.x+kx,p.y-ky]]
abcd_=[[shift.x,shift.y],[shift.x,n+shift.y],[n+shift.x,n+shift.y],[n+shift.x,shift.y]]
m=cv.getPerspectiveTransform(np.float32(abcd),np.float32(abcd_))
t1=getTranslation(-n/2,-n/2)
mir=getMirroring()
proj=getProjection()
rot=getRotation()
t2=getTranslation(n/2,n/2)
for mi in [t1,mir,proj,rot,t2]:
m=np.matmul(mi,m)
img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE))
img=np.uint8(img)
point=p.transform(m)*2/self.SIDE-EPoint(1,1)
yield (img,[point.x,point.y])
def _getCenter(self):
(a,b,c,d)=self.grid
p=Line.fromPoints(a,c)
q=Line.fromPoints(b,d)
return p.intersect(q)
def _computeCrop(self,m):
grid=Corners(c.transform(m) for c in self.grid)
(x1,y1,x2,y2)=computeBoundingBox(grid)
(wg,hg)=(x2-x1,y2-y1)
(left,top,right,bottom)=[random.uniform(0.05,0.2) for i in range(4)]
t2=getTranslation(left*wg-x1, top*hg-y1)
scale=getScale(self.SIDE/(wg*(1+left+right)), self.SIDE/(hg*(1+top+bottom)))
return np.matmul(scale,t2)
def _createNoise(self,mag=0.05):
alpha=random.uniform(0,math.pi*2)
d=random.uniform(0,self.SIDE*mag)
return EPoint(math.cos(alpha)*d, math.sin(alpha)*d)
def show(self):
img=cv.cvtColor(self.img,cv.COLOR_GRAY2BGR)
for c in self.grid:
cv.circle(img,(int(c.x),int(c.y)),3,[0,255,0],-1)
img=cv.resize(img,(self.SIDE*2,self.SIDE*2))
show(img)
def traverseDirs(root):
stack=[root]
while len(stack)>0:
d=stack.pop()
contents=sorted(os.scandir(d),key=lambda f: f.name,reverse=True)
if any(f.name=="annotations.json.gz" for f in contents):
log.info(d)
yield d
for f in contents:
if f.is_dir(): stack.append(f.path)
def harvestDir(path):
annotations=DataFile(os.path.join(path,"annotations.json.gz"))
imgFilter=lambda f: f.is_file() and re.match(r".*\.(jpg|jpeg|png|gif)$", f.name.lower())
files=sorted(filter(imgFilter,os.scandir(path)),key=lambda f: f.name)
boards=annotations["."]
for f in files:
grade=annotations.get(f.name,[Board()])[0].grade
Stats.counts[grade]+=1
if not Board.UNSET<grade<=Board.GOOD: continue
img=cv.imread(f.path)
img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
for b in boards:
sample=Sample(img,b.grid)
# sample.show()
# (transformedImg,label)=sample.transform()
# (transformedImg,label)=sample.rectify()
for (transformedImg,label) in sample.cut():
Sample(np.uint8(transformedImg),[(EPoint(*label)+EPoint(1,1))*Sample.SIDE/2]).show()
yield (transformedImg,label)
def loadDataset(root):
testRatio=0.1
trainRatio=1-testRatio
images=[]
labels=[]
for d in traverseDirs(root):
for (img,label) in harvestDir(d):
images.append(img)
labels.append(label)
log.info("clear images: %s",Stats.counts[1])
log.info("good images: %s",Stats.counts[2])
log.info("poor images: %s",Stats.counts[3])
log.info("unset images: %s",Stats.counts[0])
log.info("total: %s",sum(Stats.counts))
n=len(images)
keys=list(range(n))
random.shuffle(keys)
images=[images[k] for k in keys]
labels=[labels[k] for k in keys]
m=int(n*trainRatio)
return (
(np.uint8(images[:m]),np.float32(labels[:m])),
(np.uint8(images[m:]),np.float32(labels[m:]))
)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
if __name__=="__main__":
((trainImages,trainLabels),(testImages,testLabels))=loadDataset(sys.argv[1])
np.savez_compressed(
sys.argv[2],
trainImages=trainImages,
trainLabels=trainLabels,
testImages=testImages,
testLabels=testLabels
)
|