Files
        @ 9483b964f560
    
        
              Branch filter: 
        
    Location: OneEye/exp/kerokero/test.py - annotation
        
            
            9483b964f560
            791 B
            text/x-python
        
        
    
    saving and loading prepared data
    655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 9483b964f560 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 655956f6ba89 655956f6ba89 655956f6ba89 dd45e200a0dc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89  | import argparse
import numpy as np
from keras.models import load_model
from prepare_data import loadDataset,Sample
from analyzer.epoint import EPoint
from analyzer.corners import Corners
parser=argparse.ArgumentParser()
parser.add_argument("model")
parser.add_argument("data")
args=parser.parse_args()
model=load_model(args.model)
print("loading data...")
with np.load(args.data) as data:
	trainImages=data["trainImages"]
	trainLabels=data["trainLabels"]
	testImages=data["testImages"]
	testLabels=data["testLabels"]
print("done")
for img in testImages:
	label=model.predict(np.reshape(img,(1,224,224,1)))
	print(label)
	points=[]
	for i in range(4):
		points.append(EPoint(label[0][i*2],label[0][i*2+1]))
	corners=Corners(points)
	sample=Sample(np.uint8(img),corners)
	sample.show()
 |