Files
@ 8af597b8f819
Branch filter:
Location: OneEye/src/grid.py - annotation
8af597b8f819
2.9 KiB
text/x-python
further refactoring, got processes passing messages, restored computing grid and analyzing image
3bc6cb7cfd8b 5fe83c3dfb92 5f61b4d8cab9 3bc6cb7cfd8b 5f61b4d8cab9 5f61b4d8cab9 8af597b8f819 5f61b4d8cab9 5f61b4d8cab9 5f61b4d8cab9 a1b8c202099c 3bc6cb7cfd8b 3bc6cb7cfd8b 3bc6cb7cfd8b a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c 8af597b8f819 8af597b8f819 a1b8c202099c a1b8c202099c a1b8c202099c 8af597b8f819 5f61b4d8cab9 a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c 5f61b4d8cab9 a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c c842bba99503 a1b8c202099c c842bba99503 a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c 5f61b4d8cab9 5f61b4d8cab9 a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c 5f61b4d8cab9 a1b8c202099c a1b8c202099c a1b8c202099c a1b8c202099c 8af597b8f819 a1b8c202099c 5f61b4d8cab9 8af597b8f819 8af597b8f819 8af597b8f819 8af597b8f819 a1b8c202099c a1b8c202099c | import numpy
from epoint import EPoint
## Projective transformation of a point with a matrix A.
#
# Takes a point as a horizontal vector, transposes it and multiplies with A from left.
#
# @return transformed point as a numpy.array
def transformPoint(point,A):
return (A*numpy.matrix(point).transpose()).getA1()
class Grid:
## Creates a Grid from the provided Corners object.
#
# Finds the vanishing points of the board lines (corner points define perspectively transformed parallel lines). The vanishing points define the image horizon.
#
# The horizon can be used to construct a matrix for affine rectification of the image (restoring parallel lines parallelism). We transform the corner points by this matrix,
# interpolate them to get proper intersections' coordinates and then transform these back to get their placement at the original image.
#
# The result is stored in grid.intersections, a boardSize*boardSize list with [row][column] coordinates.
#
# @param corners list of EPoints in ABCD order per corners.Corners.canonizeOrder().
# !! Needs a check for proper initialization.
def __init__(self,corners):
# ad
# bc
a,b,c,d=[c.toProjective() for c in corners]
p1=numpy.cross(a,b)
p2=numpy.cross(c,d)
vanish1=numpy.cross(p1,p2)
# !! 32 bit int can overflow. keeping it reasonably small. might want to use a cleaner solution
vanish1=EPoint.fromProjective(vanish1).toProjective() # !! EPoint fails with point in infinity
p3=numpy.cross(a,d)
p4=numpy.cross(b,c)
vanish2=numpy.cross(p3,p4)
vanish2=EPoint.fromProjective(vanish2).toProjective()
horizon=numpy.cross(vanish1,vanish2)
horizon=EPoint.fromProjective(horizon).toProjective()
rectiMatrix=numpy.matrix([horizon,[0,1,0],[0,0,1]])
rectiMatrixInv=numpy.linalg.inv(rectiMatrix)
affineCorners=[EPoint.fromProjective(transformPoint(x,rectiMatrix)) for x in (a,b,c,d)]
x=[affineCorners[0]-affineCorners[3],affineCorners[1]-affineCorners[2],affineCorners[0]-affineCorners[1],affineCorners[3]-affineCorners[2]]
self.intersections=[]
boardSize=19
for r in range(boardSize):
self.intersections.append([None]*boardSize)
rowStart=(affineCorners[0]*(boardSize-1-r)+affineCorners[1]*r) / (boardSize-1)
rowEnd=(affineCorners[3]*(boardSize-1-r)+affineCorners[2]*r) / (boardSize-1)
for c in range(boardSize):
affineIntersection=(rowStart*(boardSize-1-c)+rowEnd*c) / (boardSize-1)
self.intersections[r][c]=EPoint.fromProjective(transformPoint(affineIntersection.toProjective(),rectiMatrixInv))
def stoneSizeAt(self,r,c):
intersection=self.intersections[r][c]
if c>0: width=intersection.x - self.intersections[r][c-1].x
else: width=self.intersections[r][c+1].x - intersection.x
if r>0: height=intersection.y - self.intersections[r-1][c].y
else: height=self.intersections[r+1][c].y - intersection.y
return (width,height)
|