Files
@ 7cb01d4080c9
Branch filter:
Location: OneEye/exp/board_detect.py - annotation
7cb01d4080c9
9.4 KiB
text/x-python
a hinted neural network (failed)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 79b929f58012 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 184d592b02dd 6aace8f39e75 68719ba74601 353129d558d3 ffa9f7f12374 353129d558d3 7df1503a4ca6 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 9433c7ab2989 9433c7ab2989 9433c7ab2989 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 ffa9f7f12374 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 7df1503a4ca6 353129d558d3 5617054647db 5617054647db 5617054647db 5617054647db 68719ba74601 68719ba74601 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 7df1503a4ca6 353129d558d3 353129d558d3 68719ba74601 28c6f89a3a7e 28c6f89a3a7e 28c6f89a3a7e 68719ba74601 68719ba74601 68719ba74601 353129d558d3 353129d558d3 68719ba74601 353129d558d3 ffa9f7f12374 ffa9f7f12374 5617054647db ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 79b929f58012 ffa9f7f12374 5617054647db 5617054647db 184d592b02dd 184d592b02dd 79b929f58012 184d592b02dd 184d592b02dd 353129d558d3 68719ba74601 79b929f58012 5617054647db 68719ba74601 79b929f58012 79b929f58012 68719ba74601 68719ba74601 68719ba74601 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 68719ba74601 68719ba74601 68719ba74601 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 68719ba74601 68719ba74601 68719ba74601 68719ba74601 28c6f89a3a7e 68719ba74601 68719ba74601 68719ba74601 28c6f89a3a7e 353129d558d3 ffa9f7f12374 353129d558d3 353129d558d3 79b929f58012 79b929f58012 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 7df1503a4ca6 79b929f58012 7df1503a4ca6 5617054647db 5617054647db 7df1503a4ca6 7df1503a4ca6 68719ba74601 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 68719ba74601 5617054647db 5617054647db 5617054647db 68719ba74601 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 68719ba74601 5617054647db 5617054647db 68719ba74601 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 68719ba74601 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 5617054647db 5617054647db 68719ba74601 655956f6ba89 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 68719ba74601 6aace8f39e75 6aace8f39e75 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 184d592b02dd 6aace8f39e75 184d592b02dd 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 5617054647db 7df1503a4ca6 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 353129d558d3 | import sys
sys.path.append("../src")
import os
import random
import itertools
import logging as log
import cv2 as cv
import numpy as np
from geometry import Line
from ransac import DiagonalRansac
from quantization import kmeans,QuantizedImage
from annotations import DataFile,computeBoundingBox
from hough import show,prepareEdgeImg,HoughTransform
from analyzer.epoint import EPoint
from analyzer.corners import Corners
random.seed(361)
log.basicConfig(level=log.DEBUG,format="%(message)s")
def filterStones(contours,bwImg,stoneDims):
contourImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
res=[]
for (i,c) in enumerate(contours):
keep=True
moments=cv.moments(c)
center=(moments["m10"]/(moments["m00"] or 1), moments["m01"]/(moments["m00"] or 1))
area=cv.contourArea(c)
(x,y,w,h)=cv.boundingRect(c)
if w>stoneDims[0] or h>stoneDims[1]*1.5 or w<2 or h<2:
cv.drawMarker(contourImg,tuple(map(int,center)),(0,0,255),cv.MARKER_TILTED_CROSS,12)
keep=False
coverage1=area/(w*h or 1)
hull=cv.convexHull(c)
coverage2=area/(cv.contourArea(hull) or 1)
# if coverage2<0.8:
# cv.drawMarker(contourImg,tuple(map(int,center)),(0,127,255),cv.MARKER_DIAMOND,12)
# keep=False
if keep:
res.append((EPoint(*center),c))
cv.drawMarker(contourImg,tuple(map(int,center)),(255,0,0),cv.MARKER_CROSS)
log.debug("accepted: %s",len(res))
log.debug("rejected: %s",len(contours)-len(res))
show(contourImg,"accepted and rejected stones")
return res
class BoardDetector:
def __init__(self,annotationsPath):
self._annotations=DataFile(annotationsPath)
self._rectW=0
self._rectH=0
self._rect=None
self._hough=None
self._rectiMatrix=None
self._inverseMatrix=None
self.grid=None
def __call__(self,img,filename):
# approximately detect the board
(h,w)=img.shape[:2]
log.debug("image dimensions: %s x %s",w,h)
show(img,filename)
(x1,y1,x2,y2)=self._detectRough(img,filename)
rect=img[y1:y2,x1:x2]
self._rectW=x2-x1
self._rectH=y2-y1
self._rect=rect
# quantize colors
quantized=QuantizedImage(rect)
gray=cv.cvtColor(rect,cv.COLOR_BGR2GRAY)
edges=cv.Canny(gray,70,130)
show(edges,"edges")
edgeMask=(255-edges)
quantizedImg=quantized.img & cv.cvtColor(edgeMask,cv.COLOR_GRAY2BGR)
show(quantizedImg,"quantized, edges separated")
# detect black and white stones
stones=self._detectStones(quantized,edgeMask)
# detect lines from edges and stones
edgeImg=prepareEdgeImg(rect)
self._hough=HoughTransform(edgeImg)
stonesImg=np.zeros((self._rectH,self._rectW),np.uint8)
for (point,c) in stones:
cv.circle(stonesImg,(int(point.x),int(point.y)),2,255,-1)
show(stonesImg,"detected stones")
self._hough.update(stonesImg,10)
lines=self._hough.extract()
linesImg=np.copy(rect)
for line in itertools.chain(*lines):
self._drawLine(linesImg,line)
show(linesImg,"detected lines")
# rectify the image
matrix=self._computeTransformationMatrix(lines[0][0],lines[0][-1],lines[1][0],lines[1][-1])
rectiLines=[[line.transform(matrix) for line in pack] for pack in lines]
quantized.transform(matrix)
# determine precise board edges
self.grid=self._detectGrid(rectiLines,linesImg)
self.detectPosition(quantized)
def _detectRough(self,img,filename):
corners=self._annotations[filename][0]
(x1,y1,x2,y2)=computeBoundingBox(corners)
log.debug("bounding box: (%s,%s) - (%s,%s)",x1,y1,x2,y2)
return (x1,y1,x2,y2)
def _sampleColors(self,rect):
(h,w)=rect.shape[:2]
minirect=rect[h//4:3*h//4, w//4:3*w//4]
return kmeans(minirect)
def _detectStones(self,quantized,edgeMask):
(h,w)=quantized.img.shape[:2]
mask=self._maskStones(quantized,edgeMask)
stoneDims=(w/19,h/19)
log.debug("stone dims: %s - %s",tuple(x/2 for x in stoneDims),stoneDims)
(contours,hierarchy)=cv.findContours(mask,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
stoneLocs=filterStones(contours,mask,stoneDims)
return stoneLocs
def _maskStones(self,quantized,edgeMask):
distTransform=cv.distanceTransform(quantized.maskB&edgeMask,cv.DIST_L2,5)
maskB=cv.inRange(distTransform,6,20)
show(maskB,"black areas")
distTransform=cv.distanceTransform(quantized.maskW&edgeMask,cv.DIST_L2,5)
maskW=cv.inRange(distTransform,6,20)
show(maskW,"white areas")
stones=cv.bitwise_or(maskB,maskW)
show(stones,"black and white areas")
return stones
def _computeTransformationMatrix(self,p,q,r,s): # p || q, r || s
(a,b,c,d)=Corners([p.intersect(r),p.intersect(s),q.intersect(r),q.intersect(s)]) # canonize the abcd order
pad=20
a_=EPoint(b.x+pad,min(a.y,d.y)+pad)
b_=EPoint(b.x+pad,max(b.y,c.y)-pad)
c_=EPoint(c.x-pad,max(b.y,c.y)-pad)
d_=EPoint(c.x-pad,min(a.y,d.y)+pad)
abcd=[list(point) for point in (a,b,c,d)]
abcd_=[list(point) for point in (a_,b_,c_,d_)]
log.debug("abcd: %s ->",(a,b,c,d))
log.debug("-> abcd_: %s",(a_,b_,c_,d_))
matrix=cv.getPerspectiveTransform(np.float32(abcd),np.float32(abcd_))
log.debug("transformation matrix: %s",matrix)
rect=np.copy(self._rect)
for point in (a,b,c,d):
cv.drawMarker(rect,(int(point.x),int(point.y)),(0,255,255),cv.MARKER_TILTED_CROSS)
show(rect)
transformed=cv.warpPerspective(rect,matrix,(self._rectW,self._rectH))
show(transformed,"rectified image")
self._rectiMatrix=matrix
self._inverseMatrix=np.linalg.inv(matrix)
return matrix
def _detectGrid(self,lines,img):
intersections=[]
for p in lines[0]:
for q in lines[1]:
intersections.append(p.intersect(q))
sack=DiagonalRansac(intersections,19)
diagonals=sack.extract(10,3000)
log.debug("diagonals candidates: %s",diagonals)
for line in diagonals:
self._drawLine(img,line.transform(self._inverseMatrix),[0,255,255])
show(img,"diagonals candidates")
best=(0,None)
transformedImg=cv.warpPerspective(img,self._rectiMatrix,(self._rectW,self._rectH))
explored=[0,0,0]
for e in diagonals:
for f in diagonals:
explored[0]+=1
center=e.intersect(f)
if not center: continue
if center.x<0 or center.x>self._rectW or center.y<0 or center.y>self._rectH: continue
for line in itertools.chain(*lines):
for i in range(1,10): # 10th is useless, 11-19 are symmetrical to 1-9
explored[1]+=1
grid=self._constructGrid(e,f,line,i)
if not grid: continue
explored[2]+=1
score=self._scoreGrid(grid)
if score>best[0]:
best=(score,grid)
log.debug("new best grid: %s",score)
self._showGrid(transformedImg,grid)
log.debug("diagonal pairs: %s, explored grids: %s, scored grids: %s",*explored)
return best[1]
def _constructGrid(self,e,f,line,i):
"""Contruct a grid.
:param e: (Line) one diagonal
:param f: (Line) other diagonal
:param line: (Line) one of the grid lines
:param i: (int) line's index among the grid's lines, 1<=i<=9"""
center=e.intersect(f)
p1=line.intersect(e)
p2=line.intersect(f)
a=center+9*(p1-center)/(10-i)
b=center+9*(p2-center)/(10-i)
c=2*center-a
d=2*center-b
# abort unfitting sizes
if not all(0<=point.x<self._rectW and 0<=point.y<self._rectH for point in (a,b,c,d)):
return None
if any(g.dist(h)<19*10 for (g,h) in [(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)]):
return None
(a,b,c,d)=Corners([a,b,c,d])
rows=[]
cols=[]
for j in range(19):
rows.append(Line.fromPoints((a*(18-j)+b*j)/18,(d*(18-j)+c*j)/18))
cols.append(Line.fromPoints((a*(18-j)+d*j)/18,(b*(18-j)+c*j)/18))
return (rows,cols)
def _scoreGrid(self,lines):
(p,q,r,s)=(lines[0][0],lines[0][-1],lines[-1][0],lines[-1][-1])
corners=(p.intersect(r),p.intersect(s),q.intersect(r),q.intersect(s))
origCorners=[c.transform(self._inverseMatrix) for c in corners]
# must fit
if not all(0<=c.x<self._rectW and 0<=c.y<self._rectH for c in origCorners):
return 0
return sum(self._hough.scoreLine(p.transform(self._inverseMatrix)) for p in itertools.chain(*lines))
def detectPosition(self,img):
if not self.grid: return None
(rows,cols)=self.grid
intersections=[[row.intersect(col) for col in cols] for row in rows]
position=[[self._detectStoneAt(img,point) for point in row] for row in intersections]
log.debug("detected position:\n%s","\n".join("".join(row) for row in position))
return position
def _detectStoneAt(self,img,intersection):
(height,width)=img.img.shape[:2]
(x,y)=map(int,intersection)
scores=[0,0,0]
for xi in range(x-2,x+3):
if xi<0 or xi>=width: continue
for yi in range(y-2,y+3):
if yi<0 or yi>=height: continue
scores[img.get(xi,yi)]+=1
return sorted(list(zip(scores,"XO.")))[-1][1]
def _drawLine(self,img,line,color=None):
if not color: color=[0,255,0]
(h,w)=img.shape[:2]
corners=[EPoint(0,0),EPoint(w,0),EPoint(0,h),EPoint(w,h)] # NW NE SW SE
borders=[
[Line.fromPoints(corners[0],corners[1]), Line.fromPoints(corners[2],corners[3])], # N S
[Line.fromPoints(corners[0],corners[2]), Line.fromPoints(corners[1],corners[3])] # W E
]
(a,b)=(line.intersect(borders[0][0]), line.intersect(borders[0][1]))
log.debug("%s %s",line,(a,b))
if not a or not b:
(a,b)=(line.intersect(borders[1][0]), line.intersect(borders[1][1]))
log.debug("* %s %s",line,(a,b))
if any(abs(x)>10**5 for x in [*a,*b]):
log.debug("ignored")
return
cv.line(img,(int(a.x),int(a.y)),(int(b.x),int(b.y)),color)
def _showGrid(self,img,lines):
img=np.copy(img)
(rows,cols)=lines
for row in rows:
for col in cols:
point=row.intersect(col)
xy=(int(point.x),int(point.y))
cv.circle(img,xy,4,[0,0,255],-1)
show(img,"grid candidate")
if __name__=="__main__":
detector=BoardDetector(sys.argv[2])
filepath=sys.argv[1]
filename=os.path.basename(filepath)
img=cv.imread(filepath)
detector(img,filename)
|