Files
@ 7c268e382b96
Branch filter:
Location: OneEye/exp/hough.py - annotation
7c268e382b96
7.3 KiB
text/x-python
geometry: rewritten Line
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | 6d4447a2e050 6d4447a2e050 6d4447a2e050 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 6f867d8eac54 6f867d8eac54 1ceee1fdf122 6f867d8eac54 6f867d8eac54 6f867d8eac54 6d4447a2e050 6f867d8eac54 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 9433c7ab2989 9433c7ab2989 1ceee1fdf122 6d4447a2e050 6d4447a2e050 6d4447a2e050 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 9433c7ab2989 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 6d4447a2e050 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 9433c7ab2989 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 ffa9f7f12374 6d4447a2e050 6d4447a2e050 6d4447a2e050 1ceee1fdf122 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 9433c7ab2989 6d4447a2e050 6d4447a2e050 6d4447a2e050 6d4447a2e050 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 9433c7ab2989 9433c7ab2989 9433c7ab2989 9433c7ab2989 9433c7ab2989 9433c7ab2989 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 6d4447a2e050 6d4447a2e050 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 6f867d8eac54 891cf60dcb1e 6f867d8eac54 6f867d8eac54 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 6f867d8eac54 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 | import sys
sys.path.append("../src")
import os
import math
from datetime import datetime
import logging as log
import numpy as np
import scipy.optimize
import cv2 as cv
from annotations import DataFile,computeBoundingBox
from analyzer.epoint import EPoint
class HoughTransform:
def __init__(self,img):
self._angleBandwidth=30 # degrees
(h,w)=img.shape[:2]
self._diagLen=int(np.sqrt(h**2+w**2))+1
self._center=(w//2,h//2)
self._acc=np.zeros((180,self._diagLen),dtype=np.int32)
self.update(img)
def extract(self):
shift=self._diagLen//2
allPeaks=sorted(list(findPeaks(self._acc)),key=lambda rc: self._acc[rc],reverse=True)
peaks=allPeaks[:38]
peaks=[(alpha,d-shift) for (alpha,d) in peaks]
peaks=self._filterClose(peaks)
peaks.sort(key=lambda rc: rc[0])
log.debug("detected peaks: %s",peaks)
(alpha,beta)=self._detectDominantAngles(peaks)
img=self._createImg()
img=self._markPeaks(img,self._filterClose(allPeaks[:38]))
doublePeaks=peaks+[(alpha+180,-d) for (alpha,d) in peaks]
params=self._computeGridParams([(gamma,d+shift) for (gamma,d) in doublePeaks if alpha<=gamma<=alpha+self._angleBandwidth])
self._drawGridCurve(img,params,0)
params=self._computeGridParams([(gamma,d+shift) for (gamma,d) in doublePeaks if beta<=gamma<=beta+self._angleBandwidth])
self._drawGridCurve(img,params,1)
self.show(img)
def update(self,img,weight=1):
start=datetime.now().timestamp()
for (r,row) in enumerate(img):
for (c,pix) in enumerate(row):
if pix==0: continue
for alphaDeg in range(0,180):
d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
self._acc[(alphaDeg,d)]+=weight
log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))
def _computeDist(self,x,y,alphaDeg):
alphaRad=alphaDeg*math.pi/180
(x0,y0)=self._center
(dx,dy)=(x-x0,y-y0)
d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
return round(d)
def _filterClose(self,peaks): # a naive implementation
"""Discard points with Euclidean distance on the original image lower than 10.
From such pairs keep only the one with a higher value in the accumulator.
This can delete a series of points. If a-b and b-c are close and a>b>c, only a is kept."""
minDist=13
center=EPoint(*self._center)
res=[]
for (alphaDeg,d) in peaks:
alphaRad=alphaDeg*math.pi/180
point=EPoint.fromPolar((alphaRad,d),center)
ctrl=True
for (betaDeg,e) in peaks:
betaRad=betaDeg*math.pi/180
point_=EPoint.fromPolar((betaRad,e),center)
if point.dist(point_)<minDist and self._acc[(alphaDeg,d)]<self._acc[(betaDeg,e)]:
ctrl=False
if ctrl: res.append((alphaDeg,d))
return res
def _detectDominantAngles(self,peaks):
angles=[alpha for (alpha,d) in peaks]
n=len(angles)
bandwidth=self._angleBandwidth
k1=0
k2=1
histogram=[]
while k1<n:
while (k2<n and angles[k1]+bandwidth>angles[k2]) or (k2>=n and angles[k1]+bandwidth>angles[k2%n]+180):
k2+=1
histogram.append((angles[k1],k2-k1))
k1+=1
log.debug("angles histogram: %s",histogram)
dominantAngles=sorted(histogram,key=lambda xy: xy[1],reverse=True)
alpha=dominantAngles[0]
dominantAngles=[beta for beta in dominantAngles if 180-bandwidth>abs(alpha[0]-beta[0])>bandwidth]
beta=dominantAngles[0]
log.debug("dominant angles: %s, %s",alpha,beta)
return (alpha[0],beta[0])
def _computeGridParams(self,lines):
log.debug("computing grid parameters for: %s",lines)
angles=[alpha for (alpha,d) in lines]
dists=[d for (alpha,d) in lines]
curve=lambda x,a,b,c,d: a*x**3+b*x**2+c*x+d
(params,cov)=scipy.optimize.curve_fit(curve,dists,angles)
log.debug("result: %s",params)
return params
def show(self,img=None):
if img is None: img=self._createImg()
show(img,"Hough transform accumulator")
def _createImg(self):
maxVal=self._acc.max()
arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
img=np.concatenate((arr,arr,arr),axis=2)
(h,w)=img.shape[:2]
for x in range(0,w,4): # y axis
img[h//2,x]=[255,255,255]
for y in range(0,h,4):
img[y,w//2]=[255,255,255]
return img
def _markPeaks(self,img,peaks):
colors=[[255,0,0],[255,255,0],[0,255,0],[0,255,255],[0,0,255]]
for (i,(alpha,d)) in enumerate(peaks[:38]):
cv.drawMarker(img,(d,alpha),colors[i//9],cv.MARKER_TILTED_CROSS)
return img
def _drawGridCurve(self,img,params,colorKey=0):
colors=[[0,255,255],[255,0,255],[255,255,0]]
color=colors[colorKey]
(a,b,c,d)=params
(h,w)=img.shape[:2]
curve=lambda x: a*x**3+b*x**2+c*x+d
for x in range(0,w,3):
y=int(curve(x))
if y<0 or y>=2*h: continue
if y<h: img[y,x]=color
else: img[y%h,-x]=color
def findPeaks(arr2d): # a naive implementation
(h,w)=arr2d.shape
neighbours=[(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
for r in range(h):
for c in range(w):
if all(r+dr<0 or r+dr>=h or c+dc<0 or c+dc>=w or arr2d[r,c]>arr2d[r+dr,c+dc] or (i<4 and arr2d[r,c]>=arr2d[r+dr,c+dc]) for (i,(dr,dc)) in enumerate(neighbours)):
yield (r,c)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
def filterVert(edges):
kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterHor(edges):
kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterDiag(edges):
kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
edges1 = cv.erode(edges,kernel)
kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
edges1=cv.dilate(edges1,kernel)
kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
edges2 = cv.erode(edges,kernel)
kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
edges2=cv.dilate(edges2,kernel)
return edges1+edges2
def prepareEdgeImg(img):
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
show(gray,"greyscale image")
edges=cv.Canny(gray,70,130)
show(edges,"Canny edge detector")
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges,"kernel filtered edges")
return edges
def houghLines(bwImg):
colorImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
lines = cv.HoughLinesP(bwImg,1,np.pi/180,10,minLineLength=10,maxLineGap=40)
if lines is None: lines=[]
for line in lines:
x1,y1,x2,y2 = line[0]
cv.line(colorImg,(x1,y1),(x2,y2),(0,255,0),1)
show(colorImg)
if __name__=="__main__":
i=sys.argv[1]
annotations=DataFile("/home/laman/Projekty/python/oneEye/images/annotations.json.gz")
filename="{0}.jpg".format(i)
img=cv.imread(os.path.join("/home/laman/Projekty/python/oneEye/images/",filename))
(x1,y1,x2,y2)=computeBoundingBox(annotations[filename][0])
img=img[y1:y2, x1:x2, :]
# blurred=cv.GaussianBlur(img,(5,5),0)
# small=cv.resize(img,None,fx=0.5,fy=0.5,interpolation=cv.INTER_AREA)
small=img
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
gray=cv.cvtColor(small,cv.COLOR_BGR2GRAY)
# gray=clahe.apply(gray)
show(gray)
edges=cv.Canny(gray,70,130)
show(edges)
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges)
# kernel = np.ones((2,2),np.uint8)
# edges = cv.morphologyEx(edges, cv.MORPH_DILATE, kernel)
# show(edges)
# edges=cv.morphologyEx(edges,cv.MORPH_ERODE,kernel)
# show(edges)
colorEdges=cv.cvtColor(edges,cv.COLOR_GRAY2BGR)
# houghLines(edges)
h=HoughTransform(edges)
h.extract()
|