Files
@ 6aace8f39e75
Branch filter:
Location: OneEye/exp/hough.py - annotation
6aace8f39e75
5.2 KiB
text/x-python
detecting board diagonals with RANSAC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | 6d4447a2e050 6d4447a2e050 6d4447a2e050 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 6f867d8eac54 6f867d8eac54 1ceee1fdf122 275f7307dd32 6f867d8eac54 6f867d8eac54 184d592b02dd 184d592b02dd 90090fca08f9 90090fca08f9 90090fca08f9 275f7307dd32 275f7307dd32 275f7307dd32 90090fca08f9 5e5a8c4642c5 5e5a8c4642c5 90090fca08f9 275f7307dd32 275f7307dd32 90090fca08f9 5e5a8c4642c5 5e5a8c4642c5 6aace8f39e75 5e5a8c4642c5 5e5a8c4642c5 275f7307dd32 90090fca08f9 90090fca08f9 6f867d8eac54 ffa9f7f12374 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 275f7307dd32 5e5a8c4642c5 184d592b02dd 184d592b02dd 5e5a8c4642c5 184d592b02dd 275f7307dd32 275f7307dd32 5e5a8c4642c5 184d592b02dd 79b929f58012 184d592b02dd 184d592b02dd 184d592b02dd 739df5e211d8 79b929f58012 6aace8f39e75 5e5a8c4642c5 90090fca08f9 1ceee1fdf122 184d592b02dd ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 739df5e211d8 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 275f7307dd32 275f7307dd32 739df5e211d8 739df5e211d8 5e5a8c4642c5 275f7307dd32 5e5a8c4642c5 5e5a8c4642c5 275f7307dd32 275f7307dd32 5e5a8c4642c5 275f7307dd32 275f7307dd32 275f7307dd32 275f7307dd32 739df5e211d8 275f7307dd32 739df5e211d8 5e5a8c4642c5 275f7307dd32 275f7307dd32 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 739df5e211d8 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 ffa9f7f12374 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 | import sys
sys.path.append("../src")
import math
from datetime import datetime
import logging as log
import numpy as np
import scipy.optimize
import scipy.signal
import cv2 as cv
from geometry import EPoint,Line
DEBUG=True
class LineBag:
def __init__(self):
self._lines=[]
def put(self,score,alpha,beta,peaks):
self._lines.append((score,alpha,beta,peaks))
def pull(self,count):
self._lines.sort(reverse=True)
res=[]
for (score,alpha,beta,peaks) in self._lines:
if any(abs(alpha-gamma)<10 and abs(beta-delta)<10 for (_,gamma,delta,_) in res): continue
# avoid intersecting lines
if any((beta-delta)!=0 and (alpha-gamma)/(beta-delta)<0 for (_,gamma,delta,_) in res): continue
res.append((score,alpha,beta,peaks))
if len(res)>=count: break
return res
class HoughTransform:
"""Find line sequences with Hough transform.
Uses usual image coordinates on input and output, with [0,0] in the upper left corner and [height-1,width-1] in the lower right.
However, internally it uses the usual cartesian coordinates, centered at the image center. [-w/2,-h/2] in the upper left and [w/2,h/2] in the lower right."""
def __init__(self,img):
self._angleBandwidth=30 # degrees
(h,w)=img.shape[:2]
self._diagLen=int(np.sqrt(h**2+w**2))+1
self._center=(w//2,h//2)
self._acc=np.zeros((180,self._diagLen),dtype=np.int32)
self.update(img)
def extract(self):
img=self._createImg()
self.show(img)
lines=self._detectLines()
res=[]
i=0
for (score,alpha,beta,peaks) in lines:
log.debug("score: %s",score)
log.debug("alpha, beta: %s, %s",alpha,beta)
self._drawLine(img,alpha,beta,peaks,i)
res.append([])
keys=self._readLineKeys(alpha,beta)
for k in peaks:
(alphaDeg,d)=keys[k]
line=Line(alphaDeg*math.pi/180,d-self._diagLen//2)
res[-1].append(self._transformOutput(line))
res[-1].sort(key=lambda line: line.d if line.alpha<math.pi else -line.d)
i+=1
self.show(img)
return res
def update(self,img,weight=1):
start=datetime.now().timestamp()
for (r,row) in enumerate(img):
for (c,pix) in enumerate(row):
if pix==0: continue
for alphaDeg in range(0,180):
d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
self._acc[(alphaDeg,d)]+=weight
log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))
def show(self,img=None):
if img is None: img=self._createImg()
show(img,"Hough transform accumulator")
def _computeDist(self,x,y,alphaDeg):
alphaRad=alphaDeg*math.pi/180
(x0,y0)=self._center
(dx,dy)=(x-x0,y0-y)
d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
return round(d)
def _detectLines(self):
bag=LineBag()
for alpha in range(0,180+60,2):
for beta in range(max(alpha-60,0),min(alpha+60,180+60),2):
accLine=[self._acc[key] for key in self._readLineKeys(alpha,beta)]
(peaks,props)=scipy.signal.find_peaks(accLine,prominence=0)
(prominences,peaks)=zip(*sorted(zip(props["prominences"],peaks),reverse=True)[:19])
bag.put(sum(prominences),alpha,beta,peaks)
return bag.pull(2)
def _readLineKeys(self,alpha,beta):
n=self._diagLen-1
res=[]
for i in range(n+1):
k=round((alpha*(n-i)+beta*i)/n)
if k>=180:
k=k%180
i=n-i
res.append((k,i))
return res
def _transformOutput(self,line):
(x,y)=self._center
basis=EPoint(-x,y)
shiftedLine=line.shiftBasis(basis)
reflectedLine=Line(math.pi*2-shiftedLine.alpha,shiftedLine.d)
log.debug("%s -> %s",line,reflectedLine)
return reflectedLine
def _createImg(self):
maxVal=self._acc.max()
arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
img=np.concatenate((arr,arr,arr),axis=2)
(h,w)=img.shape[:2]
for x in range(0,w,4): # y axis
img[h//2,x]=[255,255,255]
for y in range(0,h,4):
img[y,w//2]=[255,255,255]
return img
def _drawLine(self,img,alpha,beta,peaks,colorKey):
colors=[[0,255,255],[255,0,255],[255,255,0]]
color=colors[colorKey]
(h,w)=img.shape[:2]
keys=self._readLineKeys(alpha,beta)
for (y,x) in keys:
if x%3!=0: continue
if y<0 or y>=h: continue
img[y,x]=color
for k in peaks:
(y,x)=keys[k]
cv.drawMarker(img,(x,y),color,cv.MARKER_TILTED_CROSS,8)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
def filterVert(edges):
kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterHor(edges):
kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterDiag(edges):
kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
edges1 = cv.erode(edges,kernel)
kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
edges1=cv.dilate(edges1,kernel)
kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
edges2 = cv.erode(edges,kernel)
kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
edges2=cv.dilate(edges2,kernel)
return edges1+edges2
def prepareEdgeImg(img):
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
show(gray,"greyscale image")
edges=cv.Canny(gray,70,130)
show(edges,"Canny edge detector")
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges,"kernel filtered edges")
return edges
|