Files
@ 2f268f9f3184
Branch filter:
Location: OneEye/exp/histogram.py - annotation
2f268f9f3184
6.2 KiB
text/x-python
more work on stone detection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | aeca91e58167 aeca91e58167 2f268f9f3184 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e aeca91e58167 aeca91e58167 891cf60dcb1e aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 2f268f9f3184 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 aeca91e58167 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 891cf60dcb1e 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 aeca91e58167 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 aeca91e58167 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 aeca91e58167 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 891cf60dcb1e 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 891cf60dcb1e 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 891cf60dcb1e 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 2f268f9f3184 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e 891cf60dcb1e | import os
import sys
import random
import cv2 as cv
import numpy as np
import scipy.cluster
import scipy.ndimage
from matplotlib import pyplot as plt
import PIL.Image
from PIL.ImageDraw import ImageDraw
from annotations import DataFile,computeBoundingBox
from hough import show,houghLines
def createHistogram(img):
# Convert BGR to HSV
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
# H in range(0,180)
# S in range(0,256)
# V in range(0,256)
planes=cv.split(hsv)
hhist=cv.calcHist(planes,[0],None,[256],(0,180),accumulate=False)
shist=cv.calcHist(planes,[1],None,[256],(0,256),accumulate=False)
vhist=cv.calcHist(planes,[2],None,[256],(0,256),accumulate=False)
width=512
height=400
binSize=width//256
histImage = np.zeros((height, width, 3), dtype=np.uint8)
cv.normalize(hhist, hhist, alpha=0, beta=height, norm_type=cv.NORM_MINMAX)
cv.normalize(shist, shist, alpha=0, beta=height, norm_type=cv.NORM_MINMAX)
cv.normalize(vhist, vhist, alpha=0, beta=height, norm_type=cv.NORM_MINMAX)
for i in range(1, 256):
cv.line(histImage, ( binSize*(i-1), height - int(round(hhist[i-1][0])) ),
( binSize*(i), height - int(round(hhist[i][0])) ),
( 255, 0, 0), thickness=2)
cv.line(histImage, ( binSize*(i-1), height - int(round(shist[i-1][0])) ),
( binSize*(i), height - int(round(shist[i][0])) ),
( 0, 255, 0), thickness=2)
cv.line(histImage, ( binSize*(i-1), height - int(round(vhist[i-1][0])) ),
( binSize*(i), height - int(round(vhist[i][0])) ),
( 0, 0, 255), thickness=2)
cv.imshow('Source image', img)
cv.imshow('calcHist Demo', histImage)
cv.waitKey()
def quantize(img):
arr=np.reshape(img,(-1,3)).astype(np.float)
colors=np.array([[0,0,0],[255,255,255],[193,165,116]],np.float)
print(colors)
(centers,distortion)=scipy.cluster.vq.kmeans(arr,colors)
print("k-means centers:",centers)
return centers
def computeClosest(x,centers):
res=centers[0]
d=np.linalg.norm(res-x)
for c in centers:
d_=np.linalg.norm(c-x)
if d_<d:
res=c
d=d_
return res
def score(arr1,arr2):
try:
return (arr1&arr2).sum() / ((arr1|arr2).sum() or 1)
except TypeError:
print(type(arr1),type(arr2))
print(arr1.shape,arr2.shape)
print(arr1.dtype,arr2.dtype)
raise TypeError()
def maxOp55(arr):
m=arr.max()
return 1 if m>127 and arr[2,2]==m else 0
def ellipse(a,b):
img=PIL.Image.new("1",(a,b))
d=ImageDraw(img)
d.ellipse((1,1,a-1,b-1),fill=1)
img.save("/tmp/ellipse.png")
return np.array(img,dtype=np.uint8)
def detectStones(img):
(bh,bw)=img.shape
sw=bw//19
sh=bh//19
print(img.shape,(sw,sh))
ell=ellipse(sw,sh)*255
# print(ell)
hitMap=np.zeros_like(img,dtype=np.uint8)
for i in range(sw,bw):
for j in range(sh,bh):
region=stones[j-sh:j, i-sw:i]
hitMap[j,i]=255*score(region,ell)
show(hitMap)
return hitMap
def detectGrid(img):
(bh,bw)=img.shape
gridMap=np.zeros_like(img,dtype=np.uint8)
for i in range(5,bw):
for j in range(5,bh):
region=img[j-5:j, i-5:i]
gridMap[j,i]=255*maxOp55(region)
show(gridMap)
def locateStone(img):
(bh,bw)=img.shape
sw=bw//19
sh=bh//19
print(img.shape,(sw,sh))
ell=ellipse(sw,sh)*255
# print(ell)
y=random.randrange(sh,bh)
x=random.randrange(sw,bw)
region=stones[y-sh:y, x-sw:x]
sc=score(region,ell)
print(sc)
show(region)
return sc
def locateLocalMaximum(img):
(bh,bw)=img.shape
x=random.randrange(0,bw)
y=random.randrange(0,bh)
val=img[y,x]
img_=cv.cvtColor(img,cv.COLOR_GRAY2BGR)
while True:
for (dx,dy) in [(0,1),(1,0),(0,-1),(-1,0),(1,1),(-1,1),(1,-1),(-1,-1)]:
x_=x+dx
y_=y+dy
val_=img[y_,x_] if 0<=x_<bw and 0<=y_<bh else 0
if val_>val:
x=x_
y=y_
val=val_
img_.itemset((y,x,0),255)
continue
break
print(x,y,val)
img_.itemset((y,x,2),255)
show(img_)
return (x,y,val)
if __name__=="__main__":
filepath=sys.argv[1]
annotations=DataFile(sys.argv[2])
filename=os.path.basename(filepath)
(x1,y1,x2,y2)=computeBoundingBox(annotations[filename][0])
(w,h)=(x2-x1,y2-y1)
img=cv.imread(filepath)
(x3,x4,y3,y4)=(x1+w//4,x1+3*w//4,y1+h//4,y1+3*h//4)
print("x3,x4,y3,y4:",x3,x4,y3,y4)
rect=img[y3:y4,x3:x4,:]
centers=quantize(rect)
print("x1,x2,y1,y2:",(x1,x2,y1,y2))
data=np.reshape(img[y1:y2,x1:x2,:],(-1,3))
print("data.shape:",data.shape)
(keys,dists)=scipy.cluster.vq.vq(data,centers)
print("keys.shape:",keys.shape)
pixels=np.array([centers[k] for k in keys],dtype=np.uint8).reshape((y2-y1,x2-x1,3))
img[y1:y2,x1:x2,:]=pixels
print("image quantized")
rect=img[y1:y2,x1:x2]
maskB=cv.inRange(rect,np.array([0,0,0]),np.array([80,80,80]))
maskB=cv.erode(maskB,np.ones((3,3),np.uint8),iterations=2)
maskW=cv.inRange(rect,np.array([160,160,160]),np.array([256,256,256]))
maskW=cv.erode(maskW,np.ones((3,3),np.uint8),iterations=2)
show(img,filename)
show(maskB,filename)
show(maskW,filename)
stones=cv.bitwise_or(maskB,maskW)
# houghLines(stones)
show(stones)
(contours,hierarchy)=cv.findContours(stones,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
contourImg=cv.drawContours(cv.cvtColor(stones,cv.COLOR_GRAY2BGR), contours, -1, (0,255,0), 1)
for (i,c) in enumerate(contours):
print(i)
moments=cv.moments(c)
center=(moments["m10"]/(moments["m00"] or 1), moments["m01"]/(moments["m00"] or 1))
print("center:", center)
cv.circle(contourImg,tuple(map(int,center)),3,(255,255,0))
area=cv.contourArea(c)
print("area:",area)
(x,y,w,h)=cv.boundingRect(c)
print("bounding box:",(x,y,w,h))
print("coverage1:",area/(w*h or 1))
hull=cv.convexHull(c)
print("coverage2:",area/(cv.contourArea(hull) or 1))
print()
show(contourImg)
# for i in range(10):
# locateStone(stones)
# distMap=cv.distanceTransform(stones,cv.DIST_L2,5)
# print("dist map:")
# show(distMap)
# print("hit map:")
# hitMap=detectStones(stones)
# for i in range(10):
# locateLocalMaximum(hitMap)
# dlib.find_peaks
# ministones=cv.resize(stones,None,fx=0.25,fy=0.25,interpolation=cv.INTER_AREA)
# dft = cv.dft(np.float32(ministones),flags = cv.DFT_COMPLEX_OUTPUT)
# dft_shift = np.fft.fftshift(dft)
# magnitude_spectrum = 20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
# plt.subplot(121),plt.imshow(stones, cmap = 'gray')
# plt.title('Input Image'), plt.xticks([]), plt.yticks([])
# plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
# plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
# plt.show()
|