Files
@ 1bdf16ab4c2c
Branch filter:
Location: OneEye/exp/hough.py - annotation
1bdf16ab4c2c
4.3 KiB
text/x-python
cleared obsolete code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | 6d4447a2e050 6d4447a2e050 6d4447a2e050 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 6f867d8eac54 6f867d8eac54 1ceee1fdf122 275f7307dd32 6f867d8eac54 6f867d8eac54 90090fca08f9 90090fca08f9 90090fca08f9 275f7307dd32 275f7307dd32 275f7307dd32 90090fca08f9 5e5a8c4642c5 5e5a8c4642c5 90090fca08f9 275f7307dd32 275f7307dd32 90090fca08f9 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 275f7307dd32 90090fca08f9 90090fca08f9 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 275f7307dd32 5e5a8c4642c5 275f7307dd32 5e5a8c4642c5 5e5a8c4642c5 275f7307dd32 275f7307dd32 5e5a8c4642c5 5e5a8c4642c5 90090fca08f9 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 1ceee1fdf122 ffa9f7f12374 275f7307dd32 275f7307dd32 c3345c5afb6d c3345c5afb6d 5e5a8c4642c5 275f7307dd32 5e5a8c4642c5 5e5a8c4642c5 275f7307dd32 275f7307dd32 5e5a8c4642c5 275f7307dd32 275f7307dd32 275f7307dd32 275f7307dd32 275f7307dd32 275f7307dd32 275f7307dd32 5e5a8c4642c5 275f7307dd32 275f7307dd32 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 1ceee1fdf122 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 5e5a8c4642c5 ffa9f7f12374 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 6f867d8eac54 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 ffa9f7f12374 | import sys
sys.path.append("../src")
import math
from datetime import datetime
import logging as log
import numpy as np
import scipy.optimize
import scipy.signal
import cv2 as cv
DEBUG=True
class LineBag:
def __init__(self):
self._lines=[]
def put(self,score,alpha,beta,peaks):
self._lines.append((score,alpha,beta,peaks))
def pull(self,count):
self._lines.sort(reverse=True)
res=[]
for (score,alpha,beta,peaks) in self._lines:
if any(abs(alpha-gamma)<10 and abs(beta-delta)<10 for (_,gamma,delta,_) in res): continue
if any((beta-delta)!=0 and (alpha-gamma)/(beta-delta)<0 for (_,gamma,delta,_) in res): continue
res.append((score,alpha,beta,peaks))
if len(res)>=count: break
return res
class HoughTransform:
def __init__(self,img):
self._angleBandwidth=30 # degrees
(h,w)=img.shape[:2]
self._diagLen=int(np.sqrt(h**2+w**2))+1
self._center=(w//2,h//2)
self._acc=np.zeros((180,self._diagLen),dtype=np.int32)
self.update(img)
def extract(self):
img=self._createImg()
self.show(img)
(ab,cd)=self._detectLines()
i=0
for (score,alpha,beta,peaks) in (ab,cd):
log.debug("score: %s",score)
log.debug("alpha, beta: %s, %s",alpha,beta)
self._drawLine(img,alpha,beta,peaks,i)
i+=1
self.show(img)
def update(self,img,weight=1):
start=datetime.now().timestamp()
for (r,row) in enumerate(img):
for (c,pix) in enumerate(row):
if pix==0: continue
for alphaDeg in range(0,180):
d=self._computeDist(c,r,alphaDeg)+self._diagLen//2
self._acc[(alphaDeg,d)]+=weight
log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))
def _computeDist(self,x,y,alphaDeg):
alphaRad=alphaDeg*math.pi/180
(x0,y0)=self._center
(dx,dy)=(x-x0,y-y0)
d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
return round(d)
def _detectLines(self):
bag=LineBag()
for alpha in range(0,180,2):
for beta in range(max(alpha-60,0),alpha+60,2):
accLine=[self._acc[key] for key in self._readLineKeys(alpha,beta)]
(peaks,props)=scipy.signal.find_peaks(accLine,prominence=0)
(prominences,peaks)=zip(*sorted(zip(props["prominences"],peaks),reverse=True)[:19])
bag.put(sum(prominences),alpha,beta,peaks)
return bag.pull(2)
def _readLineKeys(self,alpha,beta):
n=self._diagLen-1
res=[]
for i in range(n+1):
k=round((alpha*(n-i)+beta*i)/n)
if k<0 or k>=180:
k=k%180
i=n+1-i
res.append((k,i))
return res
def show(self,img=None):
if img is None: img=self._createImg()
show(img,"Hough transform accumulator")
def _createImg(self):
maxVal=self._acc.max()
arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
img=np.concatenate((arr,arr,arr),axis=2)
(h,w)=img.shape[:2]
for x in range(0,w,4): # y axis
img[h//2,x]=[255,255,255]
for y in range(0,h,4):
img[y,w//2]=[255,255,255]
return img
def _drawLine(self,img,alpha,beta,peaks,colorKey):
colors=[[0,255,255],[255,0,255],[255,255,0]]
color=colors[colorKey]
(h,w)=img.shape[:2]
keys=self._readLineKeys(alpha,beta)
for (y,x) in keys:
if x%3!=0: continue
if y<0 or y>=h: continue
img[y,x]=color
for k in peaks:
(y,x)=keys[k]
cv.drawMarker(img,(x,y),color,cv.MARKER_TILTED_CROSS,8)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
def filterVert(edges):
kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterHor(edges):
kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterDiag(edges):
kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
edges1 = cv.erode(edges,kernel)
kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
edges1=cv.dilate(edges1,kernel)
kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
edges2 = cv.erode(edges,kernel)
kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
edges2=cv.dilate(edges2,kernel)
return edges1+edges2
def prepareEdgeImg(img):
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
show(gray,"greyscale image")
edges=cv.Canny(gray,70,130)
show(edges,"Canny edge detector")
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges,"kernel filtered edges")
return edges
|