Files
@ 12717eacf401
Branch filter:
Location: OneEye/exp/stone_detect.py - annotation
12717eacf401
9.7 KiB
text/x-python
exp: looking for vanishing points
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | 8be76da66456 8be76da66456 8be76da66456 855e8825c380 8be76da66456 92f4748d07b3 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 12717eacf401 12717eacf401 8be76da66456 92f4748d07b3 92f4748d07b3 8be76da66456 90d22d070710 90d22d070710 90d22d070710 90d22d070710 90d22d070710 90d22d070710 90d22d070710 90d22d070710 855e8825c380 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 8be76da66456 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 92f4748d07b3 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 8be76da66456 855e8825c380 8be76da66456 8be76da66456 855e8825c380 855e8825c380 855e8825c380 855e8825c380 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 8be76da66456 8be76da66456 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 92f4748d07b3 90d22d070710 92f4748d07b3 92f4748d07b3 92f4748d07b3 90d22d070710 90d22d070710 90d22d070710 8be76da66456 8be76da66456 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 855e8825c380 855e8825c380 855e8825c380 855e8825c380 12717eacf401 12717eacf401 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 92f4748d07b3 855e8825c380 92f4748d07b3 92f4748d07b3 855e8825c380 92f4748d07b3 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 855e8825c380 8be76da66456 8be76da66456 8be76da66456 8be76da66456 92f4748d07b3 8be76da66456 12717eacf401 8be76da66456 90d22d070710 12717eacf401 92f4748d07b3 90d22d070710 90d22d070710 90d22d070710 90d22d070710 90d22d070710 92f4748d07b3 90d22d070710 90d22d070710 90d22d070710 12717eacf401 92f4748d07b3 90d22d070710 90d22d070710 90d22d070710 90d22d070710 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 12717eacf401 | import sys
sys.path.append("../src")
import os
import math
import random
import cv2 as cv
import numpy as np
import scipy.cluster
import scipy.ndimage
from annotations import DataFile,computeBoundingBox
from hough import show
from analyzer.epoint import EPoint,homogenize
from analyzer.grid import transformPoint
random.seed(361)
class Line():
def __init__(self,a,b):
self.a=a
self.b=b
self.points={a,b}
def getSortedPoints(self):
return tuple(sorted(self.points))
def computeAngle(self,line):
ab=self.a-self.b
cd=line.a-line.b
alpha=math.atan(ab.y/ab.x)
gamma=math.atan(cd.y/cd.x)
fi=max(alpha,gamma)-min(alpha,gamma)
return min(fi,math.pi-fi)
def intersect(self,line):
p=self.toProjective()
q=line.toProjective()
return EPoint.fromProjective(np.cross(p,q))
def toProjective(self):
return homogenize(np.cross(self.a.toProjective(),self.b.toProjective()))
def transform(self,matrix):
a=EPoint.fromProjective(transformPoint(self.a.toProjective(),matrix))
b=EPoint.fromProjective(transformPoint(self.b.toProjective(),matrix))
if a is None or b is None: return None
return Line(a,b)
def __str__(self): return "({0},{1})".format(self.a,self.b)
def __repr__(self): return "Line({0},{1})".format(repr(self.a),repr(self.b))
def kmeans(img):
arr=np.reshape(img,(-1,3)).astype(np.float)
colors=np.array([[0,0,0],[255,255,255],[193,165,116]],np.float)
print(colors)
(centers,distortion)=scipy.cluster.vq.kmeans(arr,colors)
print("k-means centers:",centers)
return centers
def quantize(img,centers):
origShape=img.shape
data=np.reshape(img,(-1,3))
(keys,dists)=scipy.cluster.vq.vq(data,centers)
pixels=np.array([centers[k] for k in keys],dtype=np.uint8).reshape(origShape)
return pixels
def filterStones(contours,bwImg,stoneDims):
contourImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
res=[]
for (i,c) in enumerate(contours):
keep=True
moments=cv.moments(c)
center=(moments["m10"]/(moments["m00"] or 1), moments["m01"]/(moments["m00"] or 1))
area=cv.contourArea(c)
(x,y,w,h)=cv.boundingRect(c)
if w>stoneDims[0] or h>stoneDims[1]*1.5 or w<2 or h<2:
cv.drawMarker(contourImg,tuple(map(int,center)),(0,0,255),cv.MARKER_TILTED_CROSS,12)
keep=False
coverage1=area/(w*h or 1)
hull=cv.convexHull(c)
coverage2=area/(cv.contourArea(hull) or 1)
if coverage2<0.8:
cv.drawMarker(contourImg,tuple(map(int,center)),(0,127,255),cv.MARKER_DIAMOND,12)
keep=False
if keep:
res.append((EPoint(*center),c))
cv.drawMarker(contourImg,tuple(map(int,center)),(255,0,0),cv.MARKER_CROSS)
print("accepted:",len(res))
print("rejected:",len(contours)-len(res))
show(contourImg)
return res
def point2lineDistance(a,b,p):
# https://en.wikipedia.org/wiki/Point-line_distance#Line_defined_by_two_points
ab=b-a
num=abs(ab.y*p.x - ab.x*p.y + b.x*a.y - a.x*b.y)
denum=math.sqrt(ab.y**2+ab.x**2)
return num/denum # double_area / side_length == height
def groupLines(points,minCount,tolerance):
random.shuffle(points)
sample=points[:57]
for (i,a) in enumerate(sample):
for (j,b) in enumerate(sample):
if j<=i: continue
ab=Line(a,b)
for c in points:
if c is a or c is b: continue
if point2lineDistance(a,b,c)<=tolerance:
ab.points.add(c)
if len(ab.points)>=minCount:
yield ab
def computeRectiMatrix(p,q,r,s):
# p || q, r || s
vanish1=homogenize(np.cross(p.toProjective(),q.toProjective()))
vanish2=homogenize(np.cross(r.toProjective(),s.toProjective()))
horizon=homogenize(np.cross(vanish1,vanish2))
return np.matrix([horizon,[0,1,0],[0,0,1]])
def scoreMatrix(matrix,p,r,lines):
p_=p.transform(matrix)
r_=r.transform(matrix)
if p_ is None or r_ is None:
return math.inf
score=0
for ab in lines:
if ab is p or ab is r: continue
ab_=ab.transform(matrix)
if ab_ is None:
score+=math.pi/2
continue
alpha=min(ab_.computeAngle(p_), ab_.computeAngle(r_))
if alpha<=math.pi/30:
score+=alpha
else: score+=math.pi/2
return score
def groupParallels(lines,tolerance,w):
ctrl=False
for (i,p) in enumerate(lines):
for (j,q) in enumerate(lines[i+1:]):
a=p.intersect(q)
if a.y>0 and a.x<w: continue
for r in lines[i+1+j+1:]:
b=r.intersect(p) # !! ideal points
c=r.intersect(q)
ab=b-a
ac=c-a
if abs(ab.x*ac.y-ab.y*ac.x)/2<=tolerance: # area
yield (p,q,r)
ctrl=True
break
if ctrl: break
if ctrl:
ctrl=False
continue
if __name__=="__main__":
filepath=sys.argv[1]
annotations=DataFile(sys.argv[2])
filename=os.path.basename(filepath)
corners=annotations[filename][0]
(x1,y1,x2,y2)=computeBoundingBox(corners)
(w,h)=(x2-x1,y2-y1)
img=cv.imread(filepath)
(x3,x4,y3,y4)=(x1+w//4,x1+3*w//4,y1+h//4,y1+3*h//4)
print("x3,x4,y3,y4:",x3,x4,y3,y4)
rect=img[y3:y4,x3:x4,:]
centers=kmeans(rect)
print("x1,x2,y1,y2:",(x1,x2,y1,y2))
img[y1:y2,x1:x2,:]=quantize(img[y1:y2,x1:x2,:],centers)
print("image quantized")
rect=img[y1:y2,x1:x2]
unit=np.array([1,1,1],dtype=np.uint8)
kernel=np.ones((3,3),np.uint8)
maskB=cv.inRange(rect,centers[0]-unit,centers[0]+unit)
maskB=cv.morphologyEx(maskB,cv.MORPH_OPEN,kernel,iterations=1)
maskB=cv.erode(maskB,kernel,iterations=2)
maskW=cv.inRange(rect,centers[1]-unit,centers[1]+unit)
maskW=cv.erode(maskW,kernel,iterations=2)
show(img,filename)
show(maskB,filename)
show(maskW,filename)
stones=cv.bitwise_or(maskB,maskW)
show(stones)
stoneDims=(w/19,h/19)
print("stone dims:",tuple(x/2 for x in stoneDims),"-",stoneDims)
(contours,hierarchy)=cv.findContours(stones,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
stoneLocs=filterStones(contours,stones,stoneDims)
linesImg=cv.cvtColor(np.zeros((h,w),np.uint8),cv.COLOR_GRAY2BGR)
cv.drawContours(linesImg,[c for (point,c) in stoneLocs],-1,(255,255,255),-1)
for (p,c) in stoneLocs:
cv.drawMarker(linesImg,(int(p.x),int(p.y)),(255,0,0),cv.MARKER_CROSS)
matsImg=np.copy(linesImg)
lineDict=dict()
minCount=min(max(math.sqrt(len(stoneLocs))-4,3),7)
print("min count:",minCount)
for line in groupLines([point for (point,contour) in stoneLocs],minCount,2):
key=line.getSortedPoints()
if key in lineDict: # we already have a line with the same incident points
continue
lineDict[line.getSortedPoints()]=line
obsolete=set()
for ab in lineDict.values():
if ab is line: continue
if line.points<ab.points: # == impossible
del lineDict[key]
break
if ab.points<line.points:
obsolete.add(ab.getSortedPoints())
for key in obsolete: del lineDict[key]
print("valid lines:",len(lineDict))
lines=sorted(lineDict.values(), key=lambda ab: len(ab.points), reverse=True)
res=[]
for line in lines:
v=line.b-line.a
alpha=math.atan(v.y/v.x)
res.append((round(math.pi/2-alpha if alpha>0 else math.pi/2+alpha,3),repr(line)))
(xa,ya)=line.a
(xb,yb)=line.b
cv.line(linesImg,(int(xa),int(ya)),(int(xb),int(yb)),(255,255,0),1)
res.sort()
# for row in res: print(row)
# linePack=[
# Line(EPoint(174.457,166.127),EPoint(174.96,27.253)),
# Line(EPoint(191.333,38.075),EPoint(191.485,71.227)),
# Line(EPoint(210.117,167.092),EPoint(205.0,50.0)),
# Line(EPoint(127.7,25.6),EPoint(120.172,179.405)),
# Line(EPoint(127.809,58.481),EPoint(124.324,127.427)),
# Line(EPoint(85.964,191.64),EPoint(97.68,14.477)),
# Line(EPoint(56.447,124.662),EPoint(54.889,137.918))
# ]
# linePack=[
# Line(EPoint(56.447,124.662),EPoint(139.695,128.104)),
# Line(EPoint(288.267,74.433),EPoint(191.485,71.227)),
# Line(EPoint(252.926,29.71),EPoint(174.96,27.253)),
# Line(EPoint(274.412,120.07),EPoint(41.065,112.759)),
# Line(EPoint(289.674,108.019),EPoint(26.17,100.538)),
# Line(EPoint(240.702,107.818),EPoint(41.065,112.759)),
# Line(EPoint(174.457,166.127),EPoint(88.192,164.5))
# ]
# for (i,p) in enumerate(linePack):
# for q in linePack[i+1:]:
# print(p.intersect(q))
# show(linesImg)
# parallels=[]
# for (i,ab) in enumerate(lines):
# for cd in lines[i+1:]:
# if ab.computeAngle(cd)>math.pi/4:
# continue
# parallels.append((ab,cd))
# print("parallel lines candidate pairs:",len(parallels))
# parallels=list(groupParallels(lines,50,w))
# print("parallel triples:",len(parallels))
# for (p,q,r) in parallels:
# print(p,q,r)
# print(p.intersect(q))
# print(p.intersect(r))
# print(q.intersect(r))
# print()
# matsImg_=np.copy(matsImg)
# for pi in (p,q,r):
# cv.line(matsImg_,(int(pi.a.x),int(pi.a.y)),(int(pi.b.x),int(pi.b.y)),(0,255,255),1)
# show(matsImg_)
# p=Line(corners[0],corners[1])
# q=Line(corners[2],corners[3])
# r=Line(corners[1],corners[2])
# s=Line(corners[3],corners[0])
#
# matrix=computeRectiMatrix(p,q,r,s)
# print(matrix)
# for (point,contour) in stoneLocs:
# point_=EPoint.fromProjective(transformPoint(point.toProjective(),matrix))
# # print(point,"->",point_)
# cv.line(matsImg,(int(point.x),int(point.y)),(int(point_.x),int(point_.y)),(0,255,255),1)
# points1=np.float32([[p.x-x1,p.y-y1] for p in corners])
# points2=np.float32([[0,0],[0,400],[400,400],[400,0]])
# print(points1)
# print(points2)
# mat=cv.getPerspectiveTransform(points1,points2)
# print(mat)
# show(rect)
# warped=cv.warpPerspective(rect,matrix,(400,400))
# show(warped)
# mats=[]
# for (i,(p,q)) in enumerate(parallels):
# for (r,s) in parallels[i+1:]:
# if p is r or p is s or q is r or q is s:
# continue
# matrix=computeRectiMatrix(p,q,r,s)
# score=scoreMatrix(matrix,p,r,lines)
# mats.append((score,p,q,r,s,matrix))
# mats.sort(key=lambda x: x[0])
# for (score,p,q,r,s,matrix) in mats[:4]:
# print(score,p,q,r,s,matrix)
# matsImg_=np.copy(matsImg)
# for ab in (p,q,r,s):
# ((xa,ya),(xb,yb))=(ab.a,ab.b)
# cv.line(matsImg_,(int(xa),int(ya)),(int(xb),int(yb)),(255,255,0),1)
# show(matsImg_)
# for (score,p,q,r,s,matrix) in mats[-4:]:
# print(score,p,q,r,s,matrix)
# matsImg_=np.copy(matsImg)
# for ab in (p,q,r,s):
# ((xa,ya),(xb,yb))=(ab.a,ab.b)
# cv.line(matsImg_,(int(xa),int(ya)),(int(xb),int(yb)),(0,0,255),1)
# show(matsImg_)
|