Languedoc ========= Language identification library based on ["N-Gram-Based Text Categorization"](https://www.cis.lmu.de/~stef/seminare/sprachenidentifizierung/cavnar_trenkle.pdf) by Cavnar and Trenkle. ## Usage 1. Create a directory `data`, with a subdirectory for each target language. Fill with your training data. 2. Run `PYTHONPATH=src/ python3 train.py`. It will create a `models.json.gz` file. 3. Build and install the package: ``` python3 -m build pip install dist/languedoc-...-py3-none-any.whl ``` 4. You can now use: ```python import languedoc language = languedoc.identify("A text you want to identify.") ``` It will output the identifier that you used as the subdirectory name in step 1, based on the closest match between n-gram frequencies. ## Accuracy Below is the training script output from my training data, from seven major European languages. It is worth noting that the crossvalidation iterates through all languages, for each creates five models and for each creates ten tests of every length of 8, 16, 32 and 64 characters. If we count the misidentified samples, we can see that the tiny 8 character samples have 84% success rate, 16 chars rise to 96% and for 32 and longer there are no errors at all. ``` PYTHONPATH=src/ python src/languedoc/train.py # Source texts: cs: dyk - krysař.txt (94122 chars) cs: hašek - švejk.txt (679701 chars) cs: poláček - hostinec u kamenného stolu.txt (434082 chars) cs: vančura - konec starých časů.txt (418857 chars) cs: čapek - apokryfy.txt (180550 chars) de: 2188-8.txt (351444 chars) de: 23396-0.txt (187138 chars) de: 46896-8.txt (248309 chars) de: pg10917.txt (384020 chars) de: pg67409.txt (333959 chars) en: fitzgerald - the great gatsby.txt (274897 chars) en: joyce - ulysses.txt (1469511 chars) en: lovecraft - the dunwich horror.txt (117020 chars) en: orwell - 1984.txt (569311 chars) en: woolf - mrs dalloway.txt (346294 chars) es: 14307-8.txt (67263 chars) es: 16670-8.txt (555534 chars) es: 51019-0.txt (420431 chars) es: 58484-8.txt (243137 chars) es: 61189-8.txt (438149 chars) fr: 44468-0.txt (360878 chars) fr: 45176-0.txt (331838 chars) fr: 64274-0.txt (108402 chars) fr: pg68138.txt (380198 chars) fr: pg68265.txt (368201 chars) it: 22642-8.txt (467018 chars) it: 28144-8.txt (285603 chars) it: 39289-0.txt (472982 chars) it: 49310-0.txt (295664 chars) it: 57040-0.txt (382809 chars) ru: Full text of История России Кириллов В.В Уч Пос 2007 661с ( 1) (1008316 chars) ru: Full text of Каменев П. H. Сканави A. H. Богословский В. H. И Др. Часть 1. Отопление. 1975 (985388 chars) ru: molier.txt (387588 chars) # Crossvalidation: cs misidentified as fr: trumm té cs misidentified as fr: cit a l cs misidentified as fr: en je ta cs misidentified as en: l hostin cs misidentified as fr: t a lidé cs misidentified as it: nazaret de misidentified as en: ch war f de misidentified as it: r professor an e de misidentified as en: en im hotel sond de misidentified as es: so viel en misidentified as de: j eckle en misidentified as es: or prete en misidentified as it: e stale en misidentified as es: es agita en misidentified as fr: connect en misidentified as de: ust be after eig en misidentified as fr: man pau en misidentified as it: a puzzle en misidentified as de: gs matte en misidentified as de: ism and es misidentified as en: se alarm es misidentified as it: reserva es misidentified as fr: ues de l es misidentified as de: deber se es misidentified as it: ronto la es misidentified as fr: ue de le es misidentified as it: no volv es misidentified as it: sa perdi es misidentified as fr: ailes de es misidentified as it: e no lle es misidentified as fr: luis sube un ra es misidentified as it: ase a la iglesia es misidentified as fr: t el rec es misidentified as it: antonio es misidentified as it: lama baltasar ti es misidentified as fr: un galope que se es misidentified as it: viduo un es misidentified as fr: les con es misidentified as it: escote ni desnud es misidentified as fr: a encont es misidentified as fr: vez vinu es misidentified as en: se han es misidentified as it: erpo de es misidentified as fr: la caus es misidentified as en: os bigot es misidentified as fr: héroes balzaqui es misidentified as fr: ue me marchara d es misidentified as fr: va de génova voy es misidentified as en: ol madrid me int fr misidentified as es: le regar fr misidentified as en: s inter fr misidentified as it: de costa fr misidentified as es: garde co fr misidentified as es: recueill fr misidentified as es: ale quel fr misidentified as en: les offi fr misidentified as it: e compar fr misidentified as de: öhrenbac fr misidentified as it: promena fr misidentified as es: horizon it misidentified as es: nica per it misidentified as es: lla stan it misidentified as es: uesto chablis ti it misidentified as fr: onna cla it misidentified as fr: va vent it misidentified as fr: n si des it misidentified as fr: endere le import it misidentified as es: el tempo it misidentified as es: a lo vid Accuracy: 0.9507%, (1331/1400 tests during crossvalidation) ``` Licensed under GNU GPLv3.