import os import re import random import itertools random.seed(19181028) CROSSVALIDATION_SOURCE_COUNT = 5 TEST_LENS = [8, 16, 32, 64] TOP_TRIGRAM_COUNT = 6000 def preprocess(text): text = re.sub(r"[\W\d_]+", " ", " "+text+" ") return text.lower() def extract_ngram_freqs(text, k): n = len(text) d = dict() for i in range(0, n-k+1): key = text[i:i+k] if key.isspace(): continue d[key] = d.get(key, 0) + 1 count = sum(d.values()) return {key: val/count for (key, val) in d.items()} def merge_ngram_freqs(freqs): n = len(freqs) res = dict() for d in freqs: for (key, val) in d.items(): res.setdefault(key, 0) res[key] += val/n return res class Sample: def __init__(self, language="??", text=""): self.language = language self.frequencies = [dict(), dict(), dict()] if text: self._extract(text) def _extract(self, text): for k in range(1, 4): self.frequencies[k-1] = extract_ngram_freqs(text, k) @staticmethod def merge(samples): assert len({x.language for x in samples}) == 1 res = Sample(samples[0].language) res.frequencies = [] for freqs in zip(*(x.frequencies for x in samples)): res.frequencies.append(merge_ngram_freqs(freqs)) return res def compare(self, other): """take k most common use frequencies x order use letter, digrams, trigrams use absolute x square""" ordered_own_trigrams = sorted(self.frequencies[2].items(), key=lambda kv: -kv[1])[:TOP_TRIGRAM_COUNT] ordered_other_trigrams = sorted(other.frequencies[2].items(), key=lambda kv: -kv[1])[:TOP_TRIGRAM_COUNT] ranked_own_trigrams = dict(zip([key for (key, freq) in ordered_own_trigrams], itertools.count(0))) ranked_other_trigrams = dict(zip([key for (key, freq) in ordered_other_trigrams], itertools.count(0))) res = sum(abs(v-ranked_other_trigrams.get(k, TOP_TRIGRAM_COUNT)) for (k, v) in ranked_own_trigrams.items()) + \ sum(abs(v-ranked_own_trigrams.get(k, TOP_TRIGRAM_COUNT)) for (k, v) in ranked_other_trigrams.items()) return res def print_overview(self): print(f"Sample({self.language}):") for freqs in self.frequencies: x = [ (k, round(v, 3)) for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1]) ] print(" ", x[:8], "...", x[-8:]) print() class SampleSet: def __init__(self, language): self.language = language self.texts = [] self.samples = [] def add(self, text): self.texts.append(text) self.samples.append(Sample(self.language, text)) def create_model(self): return Sample.merge(self.samples) def generate_tests(self, n): for (i, (text, sample)) in enumerate(itertools.cycle(zip(self.texts, self.samples))): if i >= n: break yield (text, Sample.merge([x for x in self.samples if x is not sample])) def cross_validate(sample_sets): models = [s.create_model() for s in sample_sets] score = 0 max_score = 0 for s in sample_sets: for (test_text, partial_model) in s.generate_tests(CROSSVALIDATION_SOURCE_COUNT): real_lang = partial_model.language test_models = [partial_model] + [m for m in models if m.language != real_lang] for k in TEST_LENS: for i in range(10): j = random.randrange(0, len(test_text)-k) t = test_text[j:j+k] predicted_lang = identify(t, test_models) if predicted_lang == real_lang: score += 1 else: print(real_lang, predicted_lang, t) max_score += 1 return score / max_score, (score, max_score) def identify(text, models): sample = Sample(text=text) return min(map(lambda m: (m.compare(sample), m.language), models))[1] DATA_DIR = os.path.join(os.path.dirname(__file__), "data") LANG_DIRS = sorted([x.path for x in os.scandir(DATA_DIR)]) if __name__ == "__main__": samples = [] for d in LANG_DIRS: lang = os.path.basename(d) lang_samples = SampleSet(lang) samples.append(lang_samples) for file in sorted(os.scandir(d), key=lambda f: f.name): with open(file) as f: text = f.read() text = preprocess(text) print(f"{lang}: {file.name} ({len(text)})") lang_samples.add(text) print(cross_validate(samples))