Changeset - 2de09682747e
[Not reviewed]
default
0 1 0
Laman - 3 years ago 2022-09-29 21:08:57

crossvalidation handling a variable number of input texts
1 file changed with 8 insertions and 6 deletions:
0 comments (0 inline, 0 general)
languedoc.py
Show inline comments
 
import os
 
import re
 
import random
 
import itertools
 

	
 
random.seed(19181028)
 

	
 
CROSSVALIDATION_SOURCE_COUNT = 5
 
TEST_LENS = [8, 16, 32, 64]
 
TOP_TRIGRAM_COUNT = 6000
 

	
 

	
 
def preprocess(text):
 
	text = re.sub(r"[\W\d_]+", " ", " "+text+" ")
 
	return text.lower()
 

	
 

	
 
def extract_ngram_freqs(text, k):
 
	n = len(text)
 
	d = dict()
 
@@ -98,36 +99,39 @@ class SampleSet:
 
	def __init__(self, language):
 
		self.language = language
 
		self.texts = []
 
		self.samples = []
 

	
 
	def add(self, text):
 
		self.texts.append(text)
 
		self.samples.append(Sample(self.language, text))
 

	
 
	def create_model(self):
 
		return Sample.merge(self.samples)
 

	
 
	def generate_tests(self):
 
		for (text, sample) in zip(self.texts, self.samples):
 
	def generate_tests(self, n):
 
		for (i, (text, sample)) in enumerate(itertools.cycle(zip(self.texts, self.samples))):
 
			if i >= n:
 
				break
 

	
 
			yield (text, Sample.merge([x for x in self.samples if x is not sample]))
 

	
 

	
 
def cross_validate(sample_sets):
 
	models = [s.create_model() for s in sample_sets]
 
	score = 0
 
	max_score = 0
 

	
 
	for s in sample_sets:
 
		for (test_text, partial_model) in s.generate_tests():
 
		for (test_text, partial_model) in s.generate_tests(CROSSVALIDATION_SOURCE_COUNT):
 
			real_lang = partial_model.language
 
			test_models = [partial_model] + [m for m in models if m.language != real_lang]
 

	
 
			for k in TEST_LENS:
 
				for i in range(10):
 
					j = random.randrange(0, len(test_text)-k)
 
					t = test_text[j:j+k]
 
					predicted_lang = identify(t, test_models)
 
					if predicted_lang == real_lang:
 
						score += 1
 
					else:
 
						print(real_lang, predicted_lang, t)
 
@@ -148,19 +152,17 @@ LANG_DIRS = sorted([x.path for x in os.s
 
if __name__ == "__main__":
 
	samples = []
 

	
 
	for d in LANG_DIRS:
 
		lang = os.path.basename(d)
 
		lang_samples = SampleSet(lang)
 
		samples.append(lang_samples)
 

	
 
		for file in sorted(os.scandir(d), key=lambda f: f.name):
 
			with open(file) as f:
 
				text = f.read()
 
				text = preprocess(text)
 
				print(f"{file.name} ({len(text)})")
 
				print(text[:256])
 
				print()
 
				print(f"{lang}: {file.name} ({len(text)})")
 

	
 
				lang_samples.add(text)
 

	
 
	print(cross_validate(samples))
0 comments (0 inline, 0 general)