Files
@ 54f61e475ab8
Branch filter:
Location: Languedoc/languedoc.py - annotation
54f61e475ab8
3.9 KiB
text/x-python
merged all ngrams into a single frequencies field
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 5ab4acb6f293 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 2de09682747e 6fce04d6aa8d 9b4582354d0c 6fce04d6aa8d 1c7a7c3926e6 1c7a7c3926e6 1cae4ecc8978 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 5ab4acb6f293 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1c7a7c3926e6 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 54f61e475ab8 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 54f61e475ab8 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 54f61e475ab8 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 5ab4acb6f293 5ab4acb6f293 5ab4acb6f293 5ab4acb6f293 54f61e475ab8 54f61e475ab8 54f61e475ab8 54f61e475ab8 9b4582354d0c 54f61e475ab8 54f61e475ab8 167aab0c3103 5ab4acb6f293 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 1cae4ecc8978 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 2de09682747e 2de09682747e 2de09682747e 2de09682747e 2de09682747e 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 2de09682747e 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 4efb46769b28 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 1c7a7c3926e6 3980aeb455b0 1c7a7c3926e6 6fce04d6aa8d 1cae4ecc8978 1c7a7c3926e6 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 1c7a7c3926e6 3980aeb455b0 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d 2de09682747e 1c7a7c3926e6 6fce04d6aa8d 6fce04d6aa8d 6fce04d6aa8d | import os
import re
import random
import itertools
random.seed(19181028)
CROSSVALIDATION_SOURCE_COUNT = 5
TEST_LENS = [8, 16, 32, 64]
TOP_NGRAM_COUNT = 4000
def preprocess(text):
text = re.sub(r"[\W\d_]+", " ", " "+text+" ")
return text.lower()
def extract_ngram_freqs(text, k):
n = len(text)
d = dict()
for i in range(0, n-k+1):
key = text[i:i+k]
if key.isspace():
continue
d[key] = d.get(key, 0) + 1
count = sum(d.values())
return {key: val/count for (key, val) in d.items()}
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
class Sample:
def __init__(self, language="??", text=""):
self.language = language
self.frequencies = dict()
if text:
self._extract(text)
def _extract(self, text):
for k in range(1, 4):
self.frequencies.update(extract_ngram_freqs(text, k))
@staticmethod
def merge(samples):
assert len({x.language for x in samples}) == 1
res = Sample(samples[0].language)
res.frequencies = merge_ngram_freqs([x.frequencies for x in samples])
return res
def compare(self, other):
"""take k most common
use frequencies x order
use letter, digrams, trigrams
use absolute x square"""
ordered_own_ngrams = sorted(self.frequencies.items(), key=lambda kv: -kv[1])[:TOP_NGRAM_COUNT]
ordered_other_ngrams = sorted(other.frequencies.items(), key=lambda kv: -kv[1])[:TOP_NGRAM_COUNT]
ranked_own_ngrams = dict(zip([key for (key, freq) in ordered_own_ngrams], itertools.count(0)))
ranked_other_ngrams = dict(zip([key for (key, freq) in ordered_other_ngrams], itertools.count(0)))
res = sum(abs(v-ranked_other_ngrams.get(k, TOP_NGRAM_COUNT)) for (k, v) in ranked_own_ngrams.items()) + \
sum(abs(v-ranked_own_ngrams.get(k, TOP_NGRAM_COUNT)) for (k, v) in ranked_other_ngrams.items())
return res
def print_overview(self):
print(f"Sample({self.language}):")
for freqs in self.frequencies:
x = [
(k, round(v, 3))
for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1])
]
print(" ", x[:8], "...", x[-8:])
print()
class SampleSet:
def __init__(self, language):
self.language = language
self.texts = []
self.samples = []
def add(self, text):
self.texts.append(text)
self.samples.append(Sample(self.language, text))
def create_model(self):
return Sample.merge(self.samples)
def generate_tests(self, n):
for (i, (text, sample)) in enumerate(itertools.cycle(zip(self.texts, self.samples))):
if i >= n:
break
yield (text, Sample.merge([x for x in self.samples if x is not sample]))
def cross_validate(sample_sets):
models = [s.create_model() for s in sample_sets]
score = 0
max_score = 0
for s in sample_sets:
for (test_text, partial_model) in s.generate_tests(CROSSVALIDATION_SOURCE_COUNT):
real_lang = partial_model.language
test_models = [partial_model] + [m for m in models if m.language != real_lang]
for k in TEST_LENS:
for i in range(10):
j = random.randrange(0, len(test_text)-k)
t = test_text[j:j+k]
predicted_lang = identify(t, test_models)
if predicted_lang == real_lang:
score += 1
else:
print(real_lang, predicted_lang, t)
max_score += 1
return score / max_score, (score, max_score)
def identify(text, models):
sample = Sample(text=text)
return min(map(lambda m: (m.compare(sample), m.language), models))[1]
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
LANG_DIRS = sorted([x.path for x in os.scandir(DATA_DIR)])
if __name__ == "__main__":
samples = []
for d in LANG_DIRS:
lang = os.path.basename(d)
lang_samples = SampleSet(lang)
samples.append(lang_samples)
for file in sorted(os.scandir(d), key=lambda f: f.name):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{lang}: {file.name} ({len(text)})")
lang_samples.add(text)
print(cross_validate(samples))
|